Skip to main content

Membrane-Spanning 4-Domains Subfamily A, MS4A Cluster

  • Chapter
  • First Online:
Genetic Variants in Alzheimer's Disease

Abstract

Several genome-wide association studies conducted in the context of Alzheimer’s disease have implicated the association of MS4A variants in disease. The SNPs highlighted in these studies fall within a large LD block and indicate the potential involvement of four genes: MS4A2, MS4A6A, MS4A4E and MS4A4A.

A description of structure, function and regulation is currently lacking for MS4A6A, MS4A4E and MS4A4A proteins. However, the conservation in protein structure and discrete genomic location implies shared structure function relationships with the more experimentally defined MS4A1 and MS4A2. Both MS4A1 and MS4A2 are reported to form and function as part of immunoglobulin receptor signalling complexes involved in calcium signalling. As such, the other MS4A proteins are anticipated to participate in calcium signalling, perhaps as part of a larger signalosome. The evidence of multiple isoforms and the ability of alternative transcripts to moderate the functions of these proteins indicate additional layers of functional complexity. Mutations may have impact on protein structure, protein expression or the relative amounts of isoforms expressed, though this has yet to be fully elucidated.

With the exception of MS4S4E, expression of these candidate proteins has been observed in brain tissue and in cell types associated with immunity and neuroinflammation.

It is not currently possible to specifically define a role for the candidate MS4A proteins in AD. However, it is clear that a disruption in the signalling of the cell types known to express them could contribute to the disease associated immune and neuroinflammatory processes which are well documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang Y, Tedder TF (2001) Identification of a CD20-, FcepsilonRIbeta-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics 72(2):119–127

    Article  PubMed  CAS  Google Scholar 

  2. Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155(7):1103–1107

    Article  PubMed  CAS  Google Scholar 

  3. Ishibashi K et al (2001) Identification of a new multigene four-transmembrane family (MS4A) related to CD20, HTm4 and beta subunit of the high-affinity IgE receptor. Gene 264(1):87–93

    Article  PubMed  CAS  Google Scholar 

  4. Liang Y et al (2001) Structural organization of the human MS4A gene cluster on Chromosome 11q12. Immunogenetics 53(5):357–368

    Article  PubMed  CAS  Google Scholar 

  5. Beers SA et al (2010) CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 47(2):107–114

    Article  PubMed  CAS  Google Scholar 

  6. Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17:931–972

    Article  PubMed  CAS  Google Scholar 

  7. Lim SH et al (2010) Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 95(1):135–143

    Article  PubMed  CAS  Google Scholar 

  8. Antunez C et al (2011) The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer’s disease. Genome Med 3(5):33

    Article  PubMed  CAS  Google Scholar 

  9. Hollingworth P et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435

    Article  PubMed  CAS  Google Scholar 

  10. Morgan K (2011) The three new pathways leading to Alzheimer’s disease. Neuropathol Appl Neurobiol 37(4):353–357

    Article  PubMed  CAS  Google Scholar 

  11. Naj AC et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441

    Article  PubMed  CAS  Google Scholar 

  12. Hermes M, Eichhoff G, Garaschuk O (2010) Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 14(1–2):30–41

    Article  PubMed  CAS  Google Scholar 

  13. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–872

    Article  PubMed  CAS  Google Scholar 

  14. Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodegener 4:20

    Article  PubMed  Google Scholar 

  15. Seaton G et al (2011) Sensing change: the emerging role of calcium sensors in neuronal disease. Semin Cell Dev Biol 22(5):530–535

    Article  PubMed  CAS  Google Scholar 

  16. Zundorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14(7):1275–1288

    Article  PubMed  Google Scholar 

  17. Walshe CA et al (2008) Induction of cytosolic calcium flux by CD20 is dependent upon B Cell antigen receptor signaling. J Biol Chem 283(25):16971–16984

    Article  PubMed  CAS  Google Scholar 

  18. Polyak MJ et al (2008) CD20 homo-oligomers physically associate with the B cell antigen receptor. Dissociation upon receptor engagement and recruitment of phosphoproteins and calmodulin-binding proteins. J Biol Chem 283(27):18545–18552

    Article  PubMed  CAS  Google Scholar 

  19. Polyak MJ, Deans JP (2002) Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood 99(9):3256–3262

    Article  PubMed  CAS  Google Scholar 

  20. Nadler LM et al (1981) A unique cell surface antigen identifying lymphoid malignancies of B cell origin. J Clin Invest 67(1):134–140

    Article  PubMed  CAS  Google Scholar 

  21. Golay JT, Clark EA, Beverley PC (1985) The CD20 (Bp35) antigen is involved in activation of B cells from the G0 to the G1 phase of the cell cycle. J Immunol 135(6):3795–3801

    PubMed  CAS  Google Scholar 

  22. Clark EA, Shu G, Ledbetter JA (1985) Role of the Bp35 cell surface polypeptide in human B-cell activation. Proc Natl Acad Sci U S A 82(6):1766–1770

    Article  PubMed  CAS  Google Scholar 

  23. Bubien JK et al (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121(5):1121–1132

    Article  PubMed  CAS  Google Scholar 

  24. Dombrowicz D et al (1998) Allergy-associated FcRbeta is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity 8(4):517–529

    Article  PubMed  CAS  Google Scholar 

  25. Lin S et al (1996) The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 85(7):985–995

    Article  PubMed  CAS  Google Scholar 

  26. Furumoto Y et al (2004) The FcepsilonRIbeta immunoreceptor tyrosine-based activation motif exerts inhibitory control on MAPK and IkappaB kinase phosphorylation and mast cell cytokine production. J Biol Chem 279(47):49177–49187

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki Y et al (2008) The high-affinity immunoglobulin E receptor (FcepsilonRI) regulates mitochondrial calcium uptake and a dihydropyridine receptor-mediated calcium influx in mast cells: Role of the FcepsilonRIbeta chain immunoreceptor tyrosine-based activation motif. Biochem Pharmacol 75(7):1492–1503

    Article  PubMed  CAS  Google Scholar 

  28. Yoshimaru T et al (2006) Silver activates mast cells through reactive oxygen species production and a thiol-sensitive store-independent Ca2+ influx. Free Radic Biol Med 40(11):1949–1959

    Article  PubMed  CAS  Google Scholar 

  29. Adra CN et al (1994) Cloning of the cDNA for a hematopoietic cell-specific protein related to CD20 and the beta subunit of the high-affinity IgE receptor: evidence for a family of proteins with four membrane-spanning regions. Proc Natl Acad Sci U S A 91(21):10178–10182

    Article  PubMed  CAS  Google Scholar 

  30. Donato JL et al (2002) Human HTm4 is a hematopoietic cell cycle regulator. J Clin Invest 109(1):51–58

    PubMed  CAS  Google Scholar 

  31. Kutok JL et al (2011) Characterization of the expression of HTm4 (MS4A3), a cell cycle regulator, in human peripheral blood cells and normal and malignant tissues. J Cell Mol Med 15(1):86–93

    Article  PubMed  CAS  Google Scholar 

  32. Kutok JL et al (2005) The cell cycle associated protein, HTm4, is expressed in differentiating cells of the hematopoietic and central nervous system in mice. J Mol Histol 36(1–2):77–87

    Article  PubMed  CAS  Google Scholar 

  33. Johnson AD et al (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24(24):2938–2939

    Article  PubMed  CAS  Google Scholar 

  34. Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    Article  PubMed  CAS  Google Scholar 

  35. Marchler-Bauer A et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(Database issue):D225–D229

    Article  PubMed  CAS  Google Scholar 

  36. Polyak MJ, Tailor SH, Deans JP (1998) Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol 161(7):3242–3248

    PubMed  CAS  Google Scholar 

  37. Tedder TF et al (1988) Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci U S A 85(1):208–212

    Article  PubMed  CAS  Google Scholar 

  38. Oettgen HC et al (1983) Further biochemical studies of the human B-cell differentiation antigens B1 and B2. Hybridoma 2(1):17–28

    Article  PubMed  CAS  Google Scholar 

  39. Teeling JL et al (2006) The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 177(1):362–371

    PubMed  CAS  Google Scholar 

  40. Du J et al (2007) Structural basis for recognition of CD20 by therapeutic antibody Rituximab. J Biol Chem 282(20):15073–15080

    Article  PubMed  CAS  Google Scholar 

  41. Ernst JA et al (2005) Isolation and characterization of the B-cell marker CD20. Biochemistry 44(46):15150–15158

    Article  PubMed  CAS  Google Scholar 

  42. Treanor B (2012) B-cell receptor: from resting state to activate. Immunology 136(1):21–27

    Article  PubMed  CAS  Google Scholar 

  43. Petrie RJ, Deans JP (2002) Colocalization of the B cell receptor and CD20 followed by activation-dependent dissociation in distinct lipid rafts. J Immunol 169(6):2886–2891

    PubMed  CAS  Google Scholar 

  44. Li H et al (2004) The CD20 calcium channel is localized to microvilli and constitutively associated with membrane rafts: antibody binding increases the affinity of the association through an epitope-dependent cross-linking-independent mechanism. J Biol Chem 279(19):19893–19901

    Article  PubMed  CAS  Google Scholar 

  45. Kanzaki M et al (1995) Expression of calcium-permeable cation channel CD20 accelerates progression through the G1 phase in Balb/c 3T3 cells. J Biol Chem 270(22):13099–13104

    Article  PubMed  CAS  Google Scholar 

  46. Li H et al (2003) Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 278(43):42427–42434

    Article  PubMed  CAS  Google Scholar 

  47. Deans JP, Li H, Polyak MJ (2002) CD20-mediated apoptosis: signalling through lipid rafts. Immunology 107(2):176–182

    Article  PubMed  CAS  Google Scholar 

  48. Leveille C, AL-Daccak R, Mourad W (1999) CD20 is physically and functionally coupled to MHC class II and CD40 on human B cell lines. Eur J Immunol 29(1):65–74

    Article  PubMed  CAS  Google Scholar 

  49. Szollosi J et al (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol 157(7):2939–2946

    PubMed  CAS  Google Scholar 

  50. Field KA, Holowka D, Baird B (1995) Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A 92(20):9201–9205

    Article  PubMed  CAS  Google Scholar 

  51. Field KA, Holowka D, Baird B (1997) Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J Biol Chem 272(7):4276–4280

    Article  PubMed  CAS  Google Scholar 

  52. Donnadieu E, Jouvin MH, Kinet JP (2000) A second amplifier function for the allergy-associated Fc(epsilon)RI-beta subunit. Immunity 12(5):515–523

    Article  PubMed  CAS  Google Scholar 

  53. Singleton TE et al (2009) The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. Mol Immunol 46(11–12):2333–2339

    Article  PubMed  CAS  Google Scholar 

  54. Cruse G et al (2010) A novel FcepsilonRIbeta-chain truncation regulates human mast cell proliferation and survival. FASEB J 24(10):4047–4057

    Article  PubMed  CAS  Google Scholar 

  55. Akizawa Y et al (2003) Regulation of human FcepsilonRI beta chain gene expression by Oct-1. Int Immunol 15(5):549–556

    Article  PubMed  CAS  Google Scholar 

  56. Takahashi K et al (2003) Regulation of the human high affinity IgE receptor beta-chain gene expression via an intronic element. J Immunol 171(5):2478–2484

    PubMed  CAS  Google Scholar 

  57. Ovcharenko I et al (2004) ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32(Web Server issue):W280–W286

    Article  PubMed  CAS  Google Scholar 

  58. Allen M et al (2012) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79(3):221–228

    Article  PubMed  CAS  Google Scholar 

  59. Karch CM et al (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One 7(11):e50976

    Article  PubMed  CAS  Google Scholar 

  60. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  PubMed  CAS  Google Scholar 

  61. Cho SH et al (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286(37):32713–32722

    Article  PubMed  CAS  Google Scholar 

  62. Kauppinen TM et al (2011) Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid beta. J Neuroinflammation 8:152

    Article  PubMed  CAS  Google Scholar 

  63. Prat A et al (2011) A novel mouse model of Alzheimer’s disease with chronic estrogen deficiency leads to glial cell activation and hypertrophy. J Aging Res 2011:251517

    PubMed  Google Scholar 

  64. Sailasuta N et al (2011) Minimally invasive biomarker confirms glial activation present in Alzheimer’s disease: a preliminary study. Neuropsychiatr Dis Treat 7:495–499

    Article  PubMed  CAS  Google Scholar 

  65. Song M et al (2011) TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92

    Article  PubMed  CAS  Google Scholar 

  66. D’Andrea MR, Cole GM, Ard MD (2004) The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging 25(5):675–683

    Article  PubMed  Google Scholar 

  67. Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1–2):69–91

    Article  PubMed  CAS  Google Scholar 

  68. Meyer-Luehmann M et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724

    Article  PubMed  CAS  Google Scholar 

  69. Nagele RG et al (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25(5):663–674

    Article  PubMed  CAS  Google Scholar 

  70. Rodriguez JJ et al (2010) Increase in the density of resting microglia precedes neuritic plaque formation and microglial activation in a transgenic model of Alzheimer’s disease. Cell Death Dis 1:e1

    Article  PubMed  CAS  Google Scholar 

  71. Mackic JB et al (1998) Cerebrovascular accumulation and increased blood-brain barrier permeability to circulating Alzheimer’s amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy. J Neurochem 70(1):210–215

    Article  PubMed  CAS  Google Scholar 

  72. Popescu BO et al (2009) Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 283(1–2):99–106

    Article  PubMed  CAS  Google Scholar 

  73. Schindowski K et al (2007) Increased T-cell reactivity and elevated levels of CD8+ memory T-cells in Alzheimer’s disease-patients and T-cell hyporeactivity in an Alzheimer’s disease-mouse model: implications for immunotherapy. Neuromolecular Med 9(4):340–354

    Article  PubMed  CAS  Google Scholar 

  74. Togo T et al (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124(1–2):83–92

    Article  PubMed  CAS  Google Scholar 

  75. Trieb K et al (1996) APP peptides stimulate lymphocyte proliferation in normals, but not in patients with Alzheimer’s disease. Neurobiol Aging 17(4):541–547

    Article  PubMed  CAS  Google Scholar 

  76. Loewenbrueck KF et al (2010) Th1 responses to beta-amyloid in young humans convert to regulatory IL-10 responses in Down syndrome and Alzheimer’s disease. Neurobiol Aging 31(10):1732–1742

    Article  PubMed  CAS  Google Scholar 

  77. Dropp JJ (1979) Mast cells in the human brain. Acta Anat (Basel) 105(4):505–513

    Article  CAS  Google Scholar 

  78. Goldschmidt RC et al (1984) Mast cells in rat thalamus: nuclear localization, sex difference and left-right asymmetry. Brain Res 323(2):209–217

    Article  PubMed  CAS  Google Scholar 

  79. Hough LB (1988) Cellular localization and possible functions for brain histamine: recent progress. Prog Neurobiol 30(6):469–505

    Article  PubMed  CAS  Google Scholar 

  80. Lambracht-Hall M, Dimitriadou V, Theoharides TC (1990) Migration of mast cells in the developing rat brain. Brain Res Dev Brain Res 56(2):151–159

    Article  PubMed  CAS  Google Scholar 

  81. Silver R et al (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19(1):25–31

    Article  PubMed  CAS  Google Scholar 

  82. Florenzano F, Bentivoglio M (2000) Degranulation, density, and distribution of mast cells in the rat thalamus: a light and electron microscopic study in basal conditions and after intracerebroventricular administration of nerve growth factor. J Comp Neurol 424(4):651–669

    Article  PubMed  CAS  Google Scholar 

  83. Nakae S et al (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176(4):2238–2248

    PubMed  CAS  Google Scholar 

  84. Gri G et al (2008) CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29(5):771–781

    Article  PubMed  CAS  Google Scholar 

  85. Piconese S et al (2009) Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114(13):2639–2648

    Article  PubMed  CAS  Google Scholar 

  86. Hershko AY, Rivera J (2010) Mast cell and T cell communication; amplification and control of adaptive immunity. Immunol Lett 128(2):98–104

    Article  PubMed  CAS  Google Scholar 

  87. Sayed BA et al (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184(12):6891–6900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristelle Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, K., Turton, J., Morgan, K. (2013). Membrane-Spanning 4-Domains Subfamily A, MS4A Cluster. In: Morgan, K., Carrasquillo, M. (eds) Genetic Variants in Alzheimer's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7309-1_8

Download citation

Publish with us

Policies and ethics