Skip to main content

Advertisement

Log in

Increased T-cell Reactivity and Elevated Levels of CD8+ Memory T-cells in Alzheimer’s Disease-patients and T-cell Hyporeactivity in an Alzheimer’s Disease-mouse Model: Implications for Immunotherapy

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Neuroinflammation is observed in neurodegenerative diseases like Alzheimer’s disease (AD). However, a little is known about the mechanisms of neural-immune interactions. The involvement of peripheral T-cell function in AD is still far from clear, though it plays an important role in immunotherapy. The aim of this study was to determine peripheral T-cell reactivity in AD patients and in an AD mouse model. Mitogenic activation via ligation of the T-cell receptor (TCR) with PHA-L was measured in T lymphocytes from AD patients and Thy1(APP751SL) × HMG(PS1M146L)-transgenic mice (APP × PS1). In order to uncover failures in TCR signaling, the TCR was also bypassed by PMA and ionomycin treatment. All patients were sporadic late onset cases and the transgenic mice expressed no mutant APP in lymphocytes, so that direct interactions of mutant APP on T-cell function can be excluded. CD4+ and CD8+ T-cell showed increased reactivity (tyrosine phosphorylation, CD69 expression, and proliferation) in AD, while APP × PS1 transgenic mice displayed hyporeactive CD8+ T-cells after TCR ligation. Increased levels of CD8+ T memory cells and down regulation of CD8 receptor were found in AD and the animal model. Anergic TCR uncoupling was associated with loss of MAPK signaling (p38, ERK1 and ERK2) in APP × PS1. Our data implicate the generation of reactive memory T-cell in AD and of anergic memory T-cells in transgenic mice and should be taken into concern when designing immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

7-AAD:

7-Amino actinomycin

AD:

Alzheimer’s disease

ApoE:

Apoliporotein E

APP:

Amyloid precursor protein

BrdU:

Brom-3′desoxy-uridine

CD:

Cluster of differentiation

CNS:

Central nervous system

FITC:

Fluorescein isothiocyanate

FSC:

Forward scatter

I:

Ionomycin

MMSE:

Mini mental state examination score

MAPK:

Mitogen-activated protein kinase

MS:

Multiple sclerosis

n.s.:

Not statistically significant

n.d.:

Not determined

PBMC:

Peripheral blood mononuclear cells

PE:

Phycoerythrin

PerCp:

Peridin chlorophyll

PHA-L:

Lectin from Phaseolus vulgaris Leucoagglutinin

PMA:

Phorbol 12-myristate 13-acetate

PS1:

Presenilin-1

SSC:

Side scatter

Th:

T helper

vs.:

Versus

References

  • Adunsky, A., Baram, D., Hershkowitz, M., & Mekori, Y. A. (1991). Increased cytosolic free calcium in lymphocytes of Alzheimer patients. Journal of Neuroimmunology, 33, 167–172.

    PubMed  CAS  Google Scholar 

  • Adunsky, A., Diver-Haber, A., Becker, D., & Hershkowitz, M. (1995). Basal and activated intracellular calcium ion concentrations in mononuclear cells of Alzheimer’s disease and unipolar depression. The Journals of Gerontology. Series A Biological Sciences and Medical Sciences, 50, B201–B204.

    CAS  Google Scholar 

  • Aloisi, F., Ria, F., Columba-Cabezas, S., Hess, H., Penna, G., & Adorini, L. (1999). Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. European Journal of Immunology, 29, 2705–2714.

    PubMed  CAS  Google Scholar 

  • Blanchard, V., Moussaoui, S., Czech, C., Touchet, N., Bonici, B., Planche, M., Canton, T., Jedidi, I., Gohin, M., Wirths, O., Bayer, T. A., Langui, D., Duyckaerts, C., Tremp, G., & Pradier, L. (2003). Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Experimental Neurology, 184, 247–263.

    PubMed  CAS  Google Scholar 

  • Bongioanni, P., Boccardi, B., Borgna, M., Castagna, M., & Mondino, C. (1997a). T-cell interferon gamma binding in patients with dementia of the Alzheimer type. Archives of Neurology, 54, 457–462.

    PubMed  CAS  Google Scholar 

  • Bongioanni, P., Boccardi, B., Borgna, M., & Rossi, B. (1998). T-lymphocyte interleukin 6 receptor binding in patients with dementia of Alzheimer type. Archives of Neurology, 55, 1305–1308.

    PubMed  CAS  Google Scholar 

  • Bongioanni, P., Romano, M. R., Sposito, R., Castagna, M., Boccardi, B., & Borgna, M. (1997b). T-cell tumour necrosis factor-alpha receptor binding in demented patients. Journal of Neurology, 244, 418–425.

    PubMed  CAS  Google Scholar 

  • Carson, M. J., Reilly, C. R., Sutcliffe, J. G., & Lo, D. (1999). Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. American Journal of Pathology, 154, 481–494.

    PubMed  CAS  Google Scholar 

  • Carson, M. J., & Sutcliffe, J. G. (1999). Balancing function vs. self defense: The CNS as an active regulator of immune responses. Journal of Neuroscience Research, 55, 1–8.

    PubMed  CAS  Google Scholar 

  • Chandok, M. R., & Farber, D. L. (2004). Signaling control of memory T cell generation and function. Seminars in Immunology, 16, 285–293.

    PubMed  CAS  Google Scholar 

  • Chiodetti, L., Choi, S., Barber, D. L., & Schwartz, R. H. (2006). Adaptive tolerance and clonal anergy are distinct biochemical states. Journal of Immunology, 176, 2279–2291.

    CAS  Google Scholar 

  • Cho, B. K., Wang, C., Sugawa, S., Eisen, H. N., & Chen, J. (1999). Functional differences between memory and naive CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 96, 2976–2981.

    PubMed  CAS  Google Scholar 

  • Colton, C. A., Brown, C. M., & Vitek, M. P. (2005). Sex steroids, APOE genotype and the innate immune system. Neurobiology of Aging, 26, 363–372.

    PubMed  CAS  Google Scholar 

  • Cornet, A., Bettelli, E., Oukka, M., Cambouris, C., Avellana-Adalid, V., Kosmatopoulos, K., & Liblau, R. S. (2000). Role of astrocytes in antigen presentation and naive T-cell activation. Journal of Neuroimmunology, 106, 69–77.

    PubMed  CAS  Google Scholar 

  • Cribbs, D. H., Ghochikyan, A., Vasilevko, V., Tran, M., Petrushina, I., Sadzikava, N., Babikyan, D., Kesslak, P., Kieber-Emmons, T., Cotman, C. W., & Agadjanyan, M. G. (2003). Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. International Immunology, 15, 505–514.

    PubMed  CAS  Google Scholar 

  • Czech, C., Delaere, P., Macq, A. F., Reibaud, M., Dreisler, S., Touchet, N., Schombert, B., Mazadier, M., Mercken, L., Theisen, M., Pradier, L., Octave, J. N., Beyreuther, K., & Tremp, G. (1997). Proteolytical processing of mutated human amyloid precursor protein in transgenic mice. Brain Research. Molecular Brain Research, 47, 108–116.

    PubMed  CAS  Google Scholar 

  • Dai, Z., Nasr, I. W., Reel, M., Deng, S., Diggs, L., Larsen, C. P., Rothstein, D. M., & Lakkis, F. G. (2005). Impaired recall of CD8 memory T cells in immunologically privileged tissue. Journal of Immunology, 174, 1165–1170.

    CAS  Google Scholar 

  • Das, P., Murphy, M. P., Younkin, L. H., Younkin, S. G., & Golde, T. E. (2001). Reduced effectiveness of Abeta1-42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiology of Aging, 22, 721–727.

    PubMed  CAS  Google Scholar 

  • DeSilva, D. R., Feeser, W. S., Tancula, E. J., & Scherle, P. A. (1996). Anergic T cells are defective in both jun NH2-terminal kinase and mitogen-activated protein kinase signaling pathways. The Journal of Experimental Medicine, 183, 2017–2023.

    PubMed  CAS  Google Scholar 

  • DeSilva, D. R., Jones, E. A., Feeser, W. S., Manos, E. J., & Scherle, P. A. (1997). The p38 mitogen-activated protein kinase pathway in activated and anergic Th1 cells. Cellular Immunology, 180, 116–123.

    PubMed  CAS  Google Scholar 

  • Dorszewska, J., Florczak, J., Rozycka, A., Jaroszewska-Kolecka, J., Trzeciak, W. H., & Kozubski, W. (2005). Polymorphisms of the CHRNA4 gene encoding the alpha4 subunit of nicotinic acetylcholine receptor as related to the oxidative DNA damage and the level of apoptotic proteins in lymphocytes of the patients with Alzheimer’s disease. DNA and Cell Biology, 24, 786–794.

    PubMed  CAS  Google Scholar 

  • Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C. M., Perez-tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M. N., Holcomb, L., Refolo, L., Zenk, B., Hardy, J., & Younkin, S. (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature, 383, 710–713.

    PubMed  CAS  Google Scholar 

  • Ebstein, R. P., Nemanov, L., Lubarski, G., Dano, M., Trevis, T., & Korczyn, A. D. (1996). Changes in expression of lymphocyte amyloid precursor protein mRNA isoforms in normal aging and Alzheimer’s disease. Brain Research. Molecular Brain Research, 35, 260–268.

    PubMed  CAS  Google Scholar 

  • Eckert, A., Forstl, H., Hartmann, H., Czech, C., Monning, U., Beyreuther, K., & Muller, W. E. (1995). The amplifying effect of beta-amyloid on cellular calcium signalling is reduced in Alzheimer’s disease. Neuroreport, 6, 1199–1202.

    PubMed  CAS  Google Scholar 

  • Eckert, A., Oster, M., Zerfass, R., Hennerici, M., & Muller, W. E. (2001a). Elevated levels of fragmented DNA nucleosomes in native and activated lymphocytes indicate an enhanced sensitivity to apoptosis in sporadic Alzheimer’s disease. Specific differences to vascular dementia. Dementia and Geriatric Cognitive Disorders, 12, 98–105.

    PubMed  CAS  Google Scholar 

  • Eckert, A., Schindowski, K., Leutner, S., Luckhaus, C., Touchet, N., Czech, C., & Muller, W. E. (2001b). Alzheimer’s disease-like alterations in peripheral cells from presenilin-1 transgenic mice. Neurobiology of Disease, 8, 331–342.

    PubMed  CAS  Google Scholar 

  • Eisenbraun, M. D., Tamir, A., & Miller, R. A. (2000). Altered composition of the immunological synapse in an anergic, age-dependent memory T cell subset. Journal of Immunology, 164, 6105–6112.

    CAS  Google Scholar 

  • Engelhardt, B., & Ransohoff, R. M. (2005). The ins and outs of T-lymphocyte trafficking to the CNS: Anatomical sites and molecular mechanisms. Trends in Immunology, 26, 485–495.

    PubMed  CAS  Google Scholar 

  • Esplugues, E., Sancho, D., Vega-Ramos, J., Martinez, C., Syrbe, U., Hamann, A., Engel, P., Sanchez-Madrid, F., & Lauzurica, P. (2003). Enhanced antitumor immunity in mice deficient in CD69. The Journal of Experimental Medicine, 197, 1093–1106.

    PubMed  CAS  Google Scholar 

  • Fiala, M., Liu, Q. N., Sayre, J., Pop, V., Brahmandam, V., Graves, M. C., & Vinters, H. V. (2002). Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. European Journal of Clinical Investigation, 32, 360–371.

    PubMed  CAS  Google Scholar 

  • Fields, P. E., Gajewski, T. F., & Fitch, F. W. (1996). Blocked Ras activation in anergic CD4+ T cells. Science, 271, 1276–1278.

    PubMed  CAS  Google Scholar 

  • Ford, A. L., Foulcher, E., Lemckert, F. A., & Sedgwick, J. D. (1996). Microglia induce CD4 T lymphocyte final effector function and death. The Journal of Experimental Medicine, 184, 1737–1745.

    PubMed  CAS  Google Scholar 

  • Frey, C., Bonert, A., Kratzsch, T., Rexroth, G., Rosch, W., Muller-Spahn, F., Maurer, K., Muller, W. E., & Eckert, A. (2006). Apolipoprotein E epsilon 4 is associated with an increased vulnerability to cell death in Alzheimer’s disease. Journal of Neural Transmission.

  • Furlan, R., Brambilla, E., Sanvito, F., Roccatagliata, L., Olivieri, S., Bergami, A., Pluchino, S., Uccelli, A., Comi, G., & Martino, G. (2003). Vaccination with amyloid-beta peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain, 126, 285–291.

    PubMed  Google Scholar 

  • Galimberti, D., Schoonenboom, N., Scheltens, P., Fenoglio, C., Venturelli, E., Pijnenburg, Y. A., Bresolin, N., & Scarpini, E. (2006). Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration. Neurology, 66, 146–147.

    PubMed  CAS  Google Scholar 

  • Gee, J. R., & Keller, J. N. (2005). Astrocytes: Regulation of brain homeostasis via apolipoprotein E. The International Journal of Biochemistry and Cell Biology, 37, 1145–1150.

    CAS  Google Scholar 

  • Geginat, J., Lanzavecchia, A., & Sallusto, F. (2003). Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood, 101, 4260–4266.

    PubMed  CAS  Google Scholar 

  • Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., Eisner, L., Kirby, L., Rovira, M. B., Forette, F., & Orgogozo, J. M. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64, 1553–1562.

    PubMed  CAS  Google Scholar 

  • Giuliani, F., Goodyer, C. G., Antel, J. P., & Yong, V. W. (2003). Vulnerability of human neurons to T cell-mediated cytotoxicity. Journal of Immunology, 171, 368–379.

    CAS  Google Scholar 

  • Grossmann, A., Kukull, W. A., Jinneman, J. C., Bird, T. D., Villacres, E. C., Larson, E. B., & Rabinovitch, P. S. (1993). Intracellular calcium response is reduced in CD4+ lymphocytes in Alzheimer’s disease and in older persons with Down’s syndrome. Neurobiology of Aging, 14, 177–185.

    PubMed  CAS  Google Scholar 

  • Guidi, L., Tricerri, A., Frasca, D., Vangeli, M., Errani, A. R., & Bartoloni, C. (1998). Psychoneuroimmunology and aging. Gerontology, 44, 247–261.

    PubMed  CAS  Google Scholar 

  • Hanisch, U. K., Neuhaus, J., Quirion, R., & Kettenmann, H. (1996). Neurotoxicity induced by interleukin-2: Involvement of infiltrating immune cells. Synapse, 24, 104–114.

    PubMed  CAS  Google Scholar 

  • Havenith, C. E., Askew, D., & Walker, W. S. (1998). Mouse resident microglia: Isolation and characterization of immunoregulatory properties with naive CD4+ and CD8+ T-cells. Glia, 22, 348–359.

    PubMed  CAS  Google Scholar 

  • Hubert, P., Grenot, P., Autran, B., & Debre, P. (1997). Analysis by flow cytometry of tyrosine-phosphorylated proteins in activated T-cell subsets on whole blood samples. Cytometry, 29, 83–91.

    PubMed  CAS  Google Scholar 

  • Iarlori, C., Gambi, D., Gambi, F., Lucci, I., Feliciani, C., Salvatore, M., & Reale, M. (2005). Expression and production of two selected beta-chemokines in peripheral blood mononuclear cells from patients with Alzheimer’s disease. Experimental Gerontology, 40, 605–611.

    PubMed  CAS  Google Scholar 

  • Ibarreta, D., Parrilla, R., & Ayuso, M. S. (1997). Altered Ca2+ homeostasis in lymphoblasts from patients with late-onset Alzheimer disease. Alzheimer Disease and Associated Disorders, 11, 220–227.

    PubMed  CAS  Google Scholar 

  • Ikeda, T., Yamamoto, K., Takahashi, K., Kaneyuki, H., & Yamada, M. (1991a). Interleukin-2 receptor in peripheral blood lymphocytes of Alzheimer’s disease patients. Acta Psychiatrica Scandinavica, 84, 262–265.

    PubMed  CAS  Google Scholar 

  • Ikeda, T., Yamamoto, K., Takahashi, K., & Yamada, M. (1991b). Immune system-associated antigens on the surface of peripheral blood lymphocytes in patients with Alzheimer’s disease. Acta Psychiatrica Scandinavica, 83, 444–448.

    PubMed  CAS  Google Scholar 

  • Itagaki, S., McGeer, P. L., & Akiyama, H. (1988). Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neuroscience Letters, 91, 259–264.

    PubMed  CAS  Google Scholar 

  • Jang, I. K., & Gu, H. (2003). Negative regulation of TCR signaling and T-cell activation by selective protein degradation. Current Opinion in Immunology, 15, 315–320.

    PubMed  CAS  Google Scholar 

  • Lassmann, H., & Ransohoff, R. M. (2004). The CD4-Th1 model for multiple sclerosis: A critical [correction of crucial] re-appraisal. Trends in Immunology, 25, 132–137.

    PubMed  CAS  Google Scholar 

  • Ledoux, S., Rebai, N., Dagenais, A., Shaw, I. T., Nalbantoglu, J., Sekaly, R. P., & Cashman, N. R. (1993). Amyloid precursor protein in peripheral mononuclear cells is up-regulated with cell activation. Journal of Immunology, 150, 5566–5575.

    CAS  Google Scholar 

  • Lemere, C. A., Maron, R., Selkoe, D. J., & Weiner, H. L. (2001). Nasal vaccination with beta-amyloid peptide for the treatment of Alzheimer’s disease. DNA and Cell Biology, 20, 705–711.

    PubMed  CAS  Google Scholar 

  • Lemere, C. A., Maron, R., Spooner, E. T., Grenfell, T. J., Mori, C., Desai, R., Hancock, W. W., Weiner, H. L., & Selkoe, D. J. (2000). Nasal A beta treatment induces anti-A beta antibody production and decreases cerebral amyloid burden in PD-APP mice. Annals of the New York Academy of Sciences, 920, 328–331.

    Article  PubMed  CAS  Google Scholar 

  • Leutner, S., Czech, C., Schindowski, K., Touchet, N., Eckert, A., & Muller, W. E. (2000). Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neuroscience Letters, 292, 87–90.

    PubMed  CAS  Google Scholar 

  • Ligthart, G. J., Corberand, J. X., Fournier, C., Galanaud, P., Hijmans, W., Kennes, B., Muller-Hermelink, H. K., & Steinmann, G. G. (1984). Admission criteria for immunogerontological studies in man: The SENIEUR protocol. Mechanisms of Ageing and Development, 28, 47–55.

    PubMed  CAS  Google Scholar 

  • Lombardi, V. R., Garcia, M., Rey, L., & Cacabelos, R. (1999). Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s Disease (AD) individuals. Journal of Neuroimmunology, 97, 163–171.

    PubMed  CAS  Google Scholar 

  • Maesaka, J. K., Palaia, T., Chowdhury, S. A., Shimamura, T., Fishbane, S., Reichman, W., Coyne, A., O’Rear, J. J., & El-Sabban, M. E. (1999). Partial characterization of apoptotic factor in Alzheimer plasma. The American Journal of Physiology, 276, F521–527.

    PubMed  CAS  Google Scholar 

  • Masliah, E., Hansen, L., Adame, A., Crews, L., Bard, F., Lee, C., Seubert, P., Games, D., Kirby, L., & Schenk, D. (2005). Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology, 64, 129–131.

    PubMed  CAS  Google Scholar 

  • Matyszak, M. K., Denis-Donini, S., Citterio, S., Longhi, R., Granucci, F., & Ricciardi-Castagnoli, P. (1999). Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. European Journal of Immunology, 29, 3063–3076.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., Akiyama, H., Itagaki, S., & McGeer, E. G. (1989). Immune system response in Alzheimer’s disease. The Canadian Journal of Neurological Sciences, 16, 516–527.

    PubMed  CAS  Google Scholar 

  • Mirshahidi, S., Ferris, L. C., & Sadegh-Nasseri, S. (2004). The magnitude of TCR engagement is a critical predictor of T cell anergy or activation. Journal of Immunology, 172, 5346–5355.

    CAS  Google Scholar 

  • Mirshahidi, S., Huang, C. T., & Sadegh-Nasseri, S. (2001). Anergy in peripheral memory CD4(+) T cells induced by low avidity engagement of T cell receptor. The Journal of Experimental Medicine, 194, 719–731.

    PubMed  CAS  Google Scholar 

  • Monning, U., Konig, G., Banati, R. B., Mechler, H., Czech, C., Gehrmann, J., Schreiter-Gasser, U., Masters, C. L., & Beyreuther, K. (1992). Alzheimer beta A4-amyloid protein precursor in immunocompetent cells. The Journal of Biological Chemistry, 267, 23950–23956.

    PubMed  CAS  Google Scholar 

  • Monsonego, A., Maron, R., Zota, V., Selkoe, D. J., & Weiner, H. L. (2001). Immune hyporesponsiveness to amyloid beta-peptide in amyloid precursor protein transgenic mice: Implications for the pathogenesis and treatment of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 10273–10278.

    PubMed  CAS  Google Scholar 

  • Monsonego, A., Zota, V., Karni, A., Krieger, J. I., Bar-Or, A., Bitan, G., Budson, A. E., Sperling, R., Selkoe, D. J., & Weiner, H. L. (2003). Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. The Journal of Clinical Investigation, 112, 415–422.

    PubMed  CAS  Google Scholar 

  • Orgogozo, J. M., Gilman, S., Dartigues, J. F., Laurent, B., Puel, M., Kirby, L. C., Jouanny, P., Dubois, B., Eisner, L., Flitman, S., Michel, B. F., Boada, M., Frank, A., & Hock, C. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61, 46–54.

    PubMed  CAS  Google Scholar 

  • Palotas, A., Kalman, J., Palotas, M., Juhasz, A., Janka, Z., & Penke, B. (2002). Beta-amyloid-induced increase in the resting intracellular calcium concentration gives support to tell Alzheimer lymphocytes from control ones. Brain Research Bulletin, 58, 203–205.

    PubMed  CAS  Google Scholar 

  • Panossian, L. A., Porter, V. R., Valenzuela, H. F., Zhu, X., Reback, E., Masterman, D., Cummings, J. L., & Effros, R. B. (2003). Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiology of Aging, 24, 77–84.

    PubMed  CAS  Google Scholar 

  • Park, E., Alberti, J., Mehta, P., Dalton, A., Sersen, E., & Schuller-Levis, G. (2000). Partial impairment of immune functions in peripheral blood leukocytes from aged men with Down’s syndrome. Clinical Immunology, 95, 62–69.

    PubMed  CAS  Google Scholar 

  • Pirttila, T., Mattinen, S., & Frey, H. (1992). The decrease of CD8-positive lymphocytes in Alzheimer’s disease. Journal of Neurological Sciences, 107, 160–165.

    CAS  Google Scholar 

  • Ratts, R. B., Karandikar, N. J., Hussain, R. Z., Choy, J., Northrop, S. C., Lovett-Racke, A. E., & Racke, M. K. (2006). Phenotypic characterization of autoreactive T cells in multiple sclerosis. Journal of Neuroimmunology, 178, 100–110.

    PubMed  CAS  Google Scholar 

  • Robinson Agramonte, M., Dorta-Contreras, A. J., & Lorigados Pedre, L. (2001). Immune events in central nervous system of early and late onset Alzheimer’s disease patients. Revista de Neurologia, 32, 901–904.

    PubMed  CAS  Google Scholar 

  • Rogers, J., & Mufson, E. J. (1990). Demonstrating immune-related antigens in Alzheimer’s disease brain tissue. Neurobiology of Aging, 11, 477–479.

    PubMed  CAS  Google Scholar 

  • Rota, E., Bellone, G., Rocca, P., Bergamasco, B., Emanuelli, G., & Ferrero, P. (2006). Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients. Neurological Sciences, 27, 33–39.

    PubMed  CAS  Google Scholar 

  • Rubin, B., Llobera, R., Gouaillard, C., Alcover, A., & Arnaud, J. (2000). Dissection of the role of CD3gamma chains in profound but reversible T-cell receptor down-regulation. Scandinavian Journal of Immunology, 52, 173–183.

    PubMed  CAS  Google Scholar 

  • Sala, G., Galimberti, G., Canevari, C., Raggi, M. E., Isella, V., Facheris, M., Appollonio, I., & Ferrarese, C. (2003). Peripheral cytokine release in Alzheimer patients: Correlation with disease severity. Neurobiology of Aging, 24, 909–914.

    PubMed  CAS  Google Scholar 

  • Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D., & Seubert, P. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400, 173–177.

    PubMed  CAS  Google Scholar 

  • Schindowski, K., Frohlich, L., Maurer, K., Muller, W. E., & Eckert, A. (2002). Age-related impairment of human T lymphocytes’ activation: Specific differences between CD4(+) and CD8(+) subsets. Mechanisms of Ageing and Development, 123, 375–390.

    PubMed  CAS  Google Scholar 

  • Schindowski, K., Kratzsch, T., Peters, J., Steiner, B., Leutner, S., Touchet, N., Maurer, K., Czech, C., Pradier, L., Frolich, L., Muller, W. E., & Eckert, A. (2003). Impact of aging: Sporadic, and genetic risk factors on vulnerability to apoptosis in Alzheimer’s disease. Neuromolecular Medicine, 4, 161–178.

    PubMed  CAS  Google Scholar 

  • Schindowski, K., Leutner, S., Muller, W. E., & Eckert, A. (2000). Age-related changes of apoptotic cell death in human lymphocytes. Neurobiology of Aging, 21, 661–670.

    PubMed  CAS  Google Scholar 

  • Schindowski, K., Peters, J., Gorriz, C., Schramm, U., Weinandi, T., Leutner, S., Maurer, K., Frölich, L., Muller, W. E., & Eckert, A. (2006). Apoptosis of CD4+ T and natural killer cells in Alzheimer’s disease. Pharmacopsychiatry, 39, 220–228.

    PubMed  CAS  Google Scholar 

  • Schlunck, T., Schraut, W., Riethmuller, G., & Ziegler-Heitbrock, H. W. (1990). Inverse relationship of CA2+ mobilization and cell proliferation in CD8+ memory and virgin T cells. European Journal of Immunology, 20, 1957–1963.

    PubMed  CAS  Google Scholar 

  • Schmid, I., Uittenbogaart, C. H., Keld, B., & Giorgi, J. V. (1994). A rapid method for measuring apoptosis and dual-color immunofluorescence by single laser flow cytometry. Journal of Immunological Methods, 170, 145–157.

    PubMed  CAS  Google Scholar 

  • Schuessel, K., Schafer, S., Bayer, T. A., Czech, C., Pradier, L., Muller-Spahn, F., Muller, W. E., & Eckert, A. (2005). Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiology of Disease, 18, 89–99.

    PubMed  CAS  Google Scholar 

  • Seabrook, T. J., Thomas, K., Jiang, L., Bloom, J., Spooner, E., Maier, M., Bitan, G., & Lemere, C. A. (2007). Dendrimeric Abeta1-15 is an effective immunogen in wildtype and APP-tg mice. Neurobiology of Aging, 28, 813–823.

    PubMed  CAS  Google Scholar 

  • Sedgwick, J. D., Mossner, R., Schwender, S., & ter Meulen, V. (1991). Major histocompatibility complex-expressing nonhematopoietic astroglial cells prime only CD8+ T lymphocytes: Astroglial cells as perpetuators but not initiators of CD4+ T cell responses in the central nervous system. Journal of Experimental Medicine, 173, 1235–1246.

    PubMed  CAS  Google Scholar 

  • Shalit, F., Sredni, B., Brodie, C., Kott, E., & Huberman, M. (1995). T lymphocyte subpopulations and activation markers correlate with severity of Alzheimer’s disease. Clinical Immunology and Immunopathology, 75, 246–250.

    PubMed  CAS  Google Scholar 

  • Singh, V. K. (1990). Neuroimmune axis as a basis of therapy in Alzheimer’s disease. Progress in Drug Research, 34, 383–393.

    PubMed  CAS  Google Scholar 

  • Stieler, J. T., Lederer, C., Bruckner, M. K., Wolf, H., Holzer, M., Gertz, H. J., & Arendt, T. (2001). Impairment of mitogenic activation of peripheral blood lymphocytes in Alzheimer’s disease. Neuroreport, 12, 3969–3972.

    PubMed  CAS  Google Scholar 

  • Tan, J., Town, T., Abdullah, L., Wu, Y., Placzek, A., Small, B., Kroeger, J., Crawford, F., Richards, D., & Mullan, M. (2002). CD45 isoform alteration in CD4+ T cells as a potential diagnostic marker of Alzheimer’s disease. Journal of Neuroimmunology, 132, 164–172.

    PubMed  CAS  Google Scholar 

  • Tanchot, C., Rosado, M. M., Agenes, F., Freitas, A. A., & Rocha, B. (1997). Lymphocyte homeostasis. Seminars in Immunology, 9, 331–337.

    PubMed  CAS  Google Scholar 

  • Togo, T., Akiyama, H., Iseki, E., Kondo, H., Ikeda, K., Kato, M., Oda, T., Tsuchiya, K., & Kosaka, K. (2002). Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. Journal of Neuroimmunology, 124, 83–92.

    PubMed  CAS  Google Scholar 

  • Torres, P. S., Alcover, A., Zapata, D. A., Arnaud, J., Pacheco, A., Martin-Fernandez, J. M., Villasevil, E. M., Sanal, O., & Regueiro, J. R. (2003). TCR dynamics in human mature T lymphocytes lacking CD3 gamma. Journal of Immunology, 170, 5947–5955.

    CAS  Google Scholar 

  • Town, T., Tan, J., Flavell, R. A., & Mullan, M. (2005). T-cells in Alzheimer’s disease. Neuromolecular Medicine, 7, 255–264.

    PubMed  CAS  Google Scholar 

  • Town, T., Tan, J., Sansone, N., Obregon, D., Klein, T., & Mullan, M. (2001). Characterization of murine immunoglobulin G antibodies against human amyloid-beta1-42. Neuroscience Letters, 307, 101–104.

    PubMed  CAS  Google Scholar 

  • Town, T., Vendrame, M., Patel, A., Poetter, D., DelleDonne, A., Mori, T., Smeed, R., Crawford, F., Klein, T., Tan, J., & Mullan, M. (2002). Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer’s beta-amyloid(1-42). Journal of Neuroimmunology, 132, 49–59.

    PubMed  CAS  Google Scholar 

  • Trieb, K., Ransmayr, G., Sgonc, R., Lassmann, H., & Grubeck-Loebenstein, B. (1996). APP peptides stimulate lymphocyte proliferation in normals, but not in patients with Alzheimer’s disease. Neurobiology of Aging, 17, 541–547.

    PubMed  CAS  Google Scholar 

  • Valitutti, S., Muller, S., Cella, M., Padovan, E., & Lanzavecchia, A. (1995). Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature, 375, 148–151.

    PubMed  CAS  Google Scholar 

  • Vingtdeux, V., Hamdane, M., Gompel, M., Begard, S., Drobecq, H., Ghestem, A., Grosjean, M. E., Kostanjevecki, V., Grognet, P., Vanmechelen, E., Buee, L., Delacourte, A., & Sergeant, N. (2005). Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism. Neurobiology of Disease, 20, 625–637.

    PubMed  CAS  Google Scholar 

  • Weishaupt, A., Jander, S., Bruck, W., Kuhlmann, T., Stienekemeier, M., Hartung, T., Toyka, K. V., Stoll, G., & Gold, R. (2000). Molecular mechanisms of high-dose antigen therapy in experimental autoimmune encephalomyelitis: Rapid induction of Th1-type cytokines and inducible nitric oxide synthase. Journal of Immunology, 165, 7157–7163.

    CAS  Google Scholar 

  • Wenham, P. R., Price, W. H., & Blandell, G. (1991). Apolipoprotein E genotyping by one-stage PCR. Lancet, 337, 1158–1159.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Kong, Q., Zhang, Z., Ge, P., Ba, D., & He, W. (2003). Telomere dysfunction of lymphocytes in patients with Alzheimer disease. Cognitive and Behavirol Neurology, 16, 170–176.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Dr. Robert Pfleger Stiftung, Alzheimer Initiative e.V., Hirnliga e.V. and a Marie-Curie fellowship to KS. Disclosure statement: This study was approved by the responsible Ethical Committee and in accordance with standards of the guide for the care and use of laboratory animals and with respect to European Community rules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Schindowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindowski, K., Eckert, A., Peters, J. et al. Increased T-cell Reactivity and Elevated Levels of CD8+ Memory T-cells in Alzheimer’s Disease-patients and T-cell Hyporeactivity in an Alzheimer’s Disease-mouse Model: Implications for Immunotherapy. Neuromol Med 9, 340–354 (2007). https://doi.org/10.1007/s12017-007-8015-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-007-8015-9

Keywords

Navigation