Skip to main content
Log in

A two-variable model of somatic-dendritic interactions in a bursting neuron

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a two-variable delay-differential-equation model of a pyramidal cell from the electrosensory lateral line lobe of a weakly electric fish that is capable of burst discharge. It is a simplification of a six-dimensional ordinary differential equation model for such a cell whose bifurcation structure has been analyzed (Doiron et al., J. Comput. Neurosci., 12, 2002). We have modeled the effects of back-propagating action potentials by a delay, and use an integrate-and-fire mechanism for action potential generation. The simplicity of the model presented here allows one to explicitly derive a two-dimensional map for successive interspike intervals, and to analytically investigate the effects of time-dependent forcing on such a model neuron. Some of the effects discussed include ‘burst excitability’, the creation of resonance tongues under periodic forcing, and stochastic resonance. We also investigate the effects of changing the parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Av-Ron, E., H. Parnas and L. A. Segel (1993). A basic biophysical model for bursting neurons. Biol. Cybern. 69, 87–95.

    Article  Google Scholar 

  • Booth, V. and A. Bose (2001). Neural mechanisms for generating rate and temporal codes in model CA3 pyramidal cells. J. Neurophysiol. 85, 2432–2445.

    Google Scholar 

  • Chacron, M. J., A. Longtin and L. Maler (2001). Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J. Neurosci. 21, 5328–5343.

    Google Scholar 

  • Coombes, S. and P. C. Bressloff (1999). Mode locking and Arnold tongues in integrate-and-fire neural oscillators. Phys. Rev. E 60, 2086–2096.

    Article  MathSciNet  Google Scholar 

  • Coombes, S., M. R. Owen and G. D. Smith (2001). Mode locking in a periodically forced integrate-and-fire-or-burst neuron model. Phys. Rev. E 64, 041914.

    Google Scholar 

  • de Vries, G. (1998). Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci. 8, 281–316.

    Article  MATH  MathSciNet  Google Scholar 

  • Doiron, B., A. Longtin, R. W. Turner and L. Maler (2001a). Model of gamma frequency burst discharge generated by conditional backpropagation. J. Neurophysiol. 86, 1523–1545.

    Google Scholar 

  • Doiron, B., L. Noonan, R. W. Turner, A. Longtin and L. Maler (2001b). Shifting burst threshold with dendritic conductances, XXXI Proc. Soc. Neurosci., San Diego.

  • Doiron, B., C. R. Laing, A. Longtin and L. Maler (2002). “Ghostbursting”: a novel bursting mechanism in pyramidal cells. J. Comput. Neurosci. 12, 5–25.

    Article  Google Scholar 

  • Drazin, P. G. (1992). Nonlinear Systems, Cambridge University Press.

  • Ermentrout, G. B. and N. Kopell (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. USA 95, 1259–1264.

    Article  Google Scholar 

  • Gammaitoni, L., P. Hänggi, P. Jung and F. Marchesoni (1998). Stochastic resonance. Rev. Mod. Phys. 70, 223–287.

    Article  Google Scholar 

  • Glass, L. and M. C. Mackey (1988). From Clocks to Chaos: The Rhythms of Life, Princeton University Press.

  • Glass, L. (1991). Cardiac arrhythmias and circle maps—a classical problem. Chaos 1, 13–19.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press.

  • Guevara, M. L., L. Glass and A. Shrier (1981). Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214, 1350–1353.

    Google Scholar 

  • Gutkin, B. S. and G. B. Ermentrout (1998). Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanism and cortical spike train statistics. Neural Comput. 10, 1047–1065.

    Article  Google Scholar 

  • Häusser, M., N. Spruston and G. J. Stuart (2000). Diversity and dynamics of dendritic signaling. Science 290, 739–744.

    Article  Google Scholar 

  • Izhikevich, E. M. (2000). Neural excitability, spiking, and bursting. Int. J. Bifn. Chaos 10, 1171–1266.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnston, D., J. C. Magee, C. M. Colbert and B. R. Christie (1996). Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186.

    Article  Google Scholar 

  • Keener, J. P., F. C. Hoppensteadt and J. Rinzel (1981). Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. 41, 503–517.

    Article  MathSciNet  Google Scholar 

  • Keener, J. and J. Sneyd (1998). Mathematical Physiology, Interdisciplinary Applied Mathematics, Vol. 8, New York: Springer.

    Google Scholar 

  • Kepecs, A. and X.-J. Wang (2000). Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing 32–33, 181–187.

    Article  Google Scholar 

  • Kuznetsov, Y. A. (1995). Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, Vol. 112, Springer.

  • Laing, C. R. (2002). The response of bursting neurons to sinusoidal inputs. In preparation.

  • Laing, C. R., B. Doiron, A. Longtin and L. Maler (2002a). Ghostbursting: the effects of dendrites on spike patterns. To appear in Neurocomputing.

  • Laing, C. R., B. Doiron, A. Longtin, L. Noonan, R. W. Turner and L. Maler (2002b). Burst excitability. Submitted to J. Comput. Neurosci.

  • Lemon, N. and R. W. Turner (2000). Conditional spike backpropagation generates burst discharge in a sensory neuron. J. Neurophysiol. 84, 1519–1530.

    Google Scholar 

  • Lisman, J. E. (1997). Bursts as units of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43.

    Article  Google Scholar 

  • Mainen, Z. F. and T. J. Sejnowski (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366.

    Article  Google Scholar 

  • Nelson, M. E., Z. Xu and J. R. Payne (1997). Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish. J. Comp. Physiol. A 181, 532–544.

    Article  Google Scholar 

  • Noonan, L., B. Doiron, C. R. Laing, A. Longtin and R. W. Turner (2002). Dendritic spike repolarization generates a dynamic refractory period to control burst discharge. In preparation.

  • Pinsky, P. F. and J. Rinzel (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1, 39–60.

    Article  Google Scholar 

  • Pomeau, Y. and P. Manneville (1980). Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74, 189–197.

    Article  MathSciNet  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Numerical Recipes in C, 2nd edn, Cambridge University Press.

  • Rinzel, J. and G. B. Ermentrout (1998). Analysis of neural excitability and oscillations, in Methods in Neuronal Modeling: From Ions to Networks, C. Koch and I. Segev (Eds), MIT Press.

  • Rulkov, N. F. (2000). Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86, 183–186.

    Article  Google Scholar 

  • Segev, I. and W. Rall (1998). Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21, 453–460.

    Article  Google Scholar 

  • Sivan, E., L. Segel and H. Parnas (1995). Modulated excitability: a new way to obtain bursting neurons. Biol. Cybern. 72, 455–461.

    MATH  Google Scholar 

  • Smith, G. D., C. L. Cox, S. M. Sherman and J. Rinzel (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J. Neurophysiol. 83, 588–610.

    Google Scholar 

  • Steriade, M., I. Timofeev, N. Dürmüller and F. Grenie (1998). Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike bursts. J. Neurophysiol. 79, 483–490.

    Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Reading: Addison-Wesley.

    Google Scholar 

  • Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2, 135–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Traub, R. D., M. A. Whittington, I. M. Stanford and J. G. Jefferys (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624.

    Article  Google Scholar 

  • Turner, R. W. (2002). Personal communication.

  • Vetter, P., A. Roth and M. Häusser (2001). Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85, 926–937.

    Google Scholar 

  • Wang, X.-J. (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D 62, 263–274.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, X.-J. (1999). Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Neuroscience 89, 347–362.

    Article  Google Scholar 

  • Yoshino, K., T. Nomura, K. Pakdaman and S. Sato (1999). Synthetic analysis of periodically stimulated excitable and oscillatory membrane models. Phys. Rev. E 59, 956–969.

    Article  MathSciNet  Google Scholar 

  • Zupanc, G. K. H. and L. Maler (1993). Evoked chirping in the weakly electric fish (Apteronotus leptorhynchus): a quantitative biophysical analysis. Can. J. Zool. 71, 2301–2310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Laing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laing, C.R., Longtin, A. A two-variable model of somatic-dendritic interactions in a bursting neuron. Bull. Math. Biol. 64, 829–860 (2002). https://doi.org/10.1006/bulm.2002.0303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0303

Keywords

Navigation