Skip to main content

Aptamer: A Next Generation Tool for Application in Agricultural Industry for Food Safety

  • Chapter
  • First Online:
Aptamers

Abstract

Aptamers are short DNA and RNA or protein sequence and have been extensively researched for their application in different field such as therapeutic agents, as delivery vehicles, as analytical tool, and as recognition molecule for sensor and different assay. To better understand the potential of aptamer in food safety and agriculture sector, an overview of the progress in the generation and application in these sectors is discussed in this review. Special attention is paid to the researches which are relatively close to the application for contaminants detection in food material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L (2011) Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin a in wine. Food Control 22(5):737–743

    Article  CAS  Google Scholar 

  • Beier R, Pahlke C, Quenzel P, Henseleit A, Boschke E, Cuniberti G, Labudde D (2014) FEMS Microbiology Letters banner. https://doi.org/10.1111/1574-6968.12366

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Denu JM, Dixon JE, Ellingtoni AD (1998) RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase. J Biol Chem 273(23):14309–14314

    Article  CAS  PubMed  Google Scholar 

  • Bourke ATC, Hawes RB (1983) Freshwater cyanobacteria (blue-green algae) and human health. Med J Aust 1(11):491–492

    Article  CAS  PubMed  Google Scholar 

  • Bruno JG, Carrillo MP, Phillips T, Vail NK, Hanson D (2009) Competitive FRET-aptamer-based detection of methylphosphonic acid: a common nerve agent metabolite. J Fluoresc 18:867–876. https://doi.org/10.1007/s10895-008-0316-3

    Article  CAS  PubMed  Google Scholar 

  • Bruno JG, Carrillo MP, Phillips T, Hanson D, Bohmann JA (2010) DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption. J Fluoresc 21:2021–2033. https://doi.org/10.1007/s10895-011-0903-6

    Article  CAS  PubMed  Google Scholar 

  • Bruno JG, Richarte AM, Carrillo MP, Edge A (2012) An aptamer beacon responsive to botulinum toxins. Biosens Bioelectron 31(1):240–243

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37(14):4621–4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Lu X, Hu X, Zhang Y, Zeng L, Chen L, Sun M (2016) In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Biosci Biotechnol Biochem 80(5):823–832

    Article  CAS  PubMed  Google Scholar 

  • Chang GJ, Kuno G, Purdy DE, Davis BS (2004) Recent advancement in flavivirus vaccine development. Expet Rev Vaccine 3:199–220. https://doi.org/10.1586/14760584.3.2.199

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 15(71):230–242

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhou J, Luo F, Mohammed AB, Zhang XL (2007) Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun 357:743–748

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li L, Mu X, Zhao H, Guo L (2012) Electrochemical aptasensor for detection of copper based on a reagentless signal-on architecture and amplification by gold nanoparticles. Talanta 85:730–735

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Huang Y, Duan N et al (2013) Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem 405(20):6573–6581

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Huang Y, Duan N et al (2014) Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. J Agric Food Chem 62(42):10368–10374

    Article  CAS  PubMed  Google Scholar 

  • Chu S (1991) Laser manipulation of atoms and particles. Science 253(5022):861–866

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Aguado JA, Penner G (2008a) Determination of ochratoxin a with a DNA aptamer. J Agric Food Chem 56(22):10456–10461

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Aguado JA, Penner G (2008b) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80(22):8853–8855

    Article  CAS  PubMed  Google Scholar 

  • Danesh NM, Ramezani M, Sarreshtehdar EA, Abnous K, Taghdisi SM (2016) A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron 15(75):123–128

    Google Scholar 

  • Dapra J, Lauridsen LH, Nielsen AT, Rozlosnik N (2013) Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor. Biosens Bioelectron 43:315–320

    Article  PubMed  CAS  Google Scholar 

  • Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A (2016) Aptamers against pathogenic microorganisms. Crit Rev Microbiol 42(6):847–865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deeds JR, Landsberg JH, Etheridge SM, Pitcher GC, Longan SW (2008) Non-traditional vectors for paralytic shellfish poisoning. Mar Drugs 6(2):308–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeGrasse JA (2012) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:e33410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeRosa MR, Monreal C, Schnitzer M, W alsh R, Sultan Y. (2010) Nanotechnology in fertilizers. Nat Nanotechnol J 5:91

    Article  CAS  PubMed  Google Scholar 

  • Dhaked RK, Singh MK, Singh P, Gupta P (2010) Botulinum toxin: bioweapon & magic drug. Indian J Med Res 132(11):489–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreisig K, Taxvig C, Birkhøj Kjærstad M, Nellemann C, Hass U, Vinggaard AM (2013) Predictive value of cell assays for developmental toxicity and embryotoxicity. ALTEX:319–330

    Google Scholar 

  • Duan N, Wu SJ, Chen XJ, Huang YK, Wang ZP (2012) J Agric Food Chem 60:4034–4038

    Google Scholar 

  • Duan N, Ding XY, He LX, Wu SJ, Wei YX, Wang ZP (2013a) Food Control 33:239–243

    Article  CAS  Google Scholar 

  • Duan N, Wu SJ, Chen XJ, Huang YK, Xia Y, Ma XY, Wang ZP (2013b) J Agric Food Chem 61:3229–3234

    Google Scholar 

  • Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:3677–3686

    Article  CAS  PubMed  Google Scholar 

  • Eissa S, Ng A, Siaj M, Tavares AC, Zourob M (2013) Selection and identification of DNA aptamers against okadaic acid for biosensing application. Anal Chem 85(24):11794–11801

    Article  CAS  PubMed  Google Scholar 

  • Elshafey R, Siaj M, Zourob M (2014) In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers. Anal Chem 86(18):9196–9203

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus L-A (2014) Selection, Characterization and Application of Nucleic Acid Aptamers for the Capture and Detection of Human Norovirus Strains. PLoS One. https://doi.org/10.1371/journal.pone.0106805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang Z, Wu W, X Lu, Zeng L (2014) Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 56:192–197

    Article  CAS  PubMed  Google Scholar 

  • Giamberardino A, Labib M, Hassan EM, Tetro J, Springthorpe S et al (2013) Ultrasensitive norovirus detection using DNA aptasensor technology. PLoS One 8:e79087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Fernández E, De-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2011) Aptamer-based inhibition assay for the electrochemical detection of tobramycin using magnetic microparticles. Electroanalysis 23:43–49. https://doi.org/10.1002/elan.20100056

  • Gua W, Sun N, Qin X, Pei M, Wang L (2015) A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs–HMIMPF6 and nanoporous PtTi alloy. Biosens Bioelectron 74:691–697

    Google Scholar 

  • Handy SM, Yakes BJ, DeGrasse JA et al (2013) First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin. Toxicon 61(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59:1582–1586. https://doi.org/10.1021/jf104189g

    Article  CAS  PubMed  Google Scholar 

  • Hu XG, Tulsieram KL, Zhou QX, Mu L, Wen JP (2012) Polymeric nanoparticle-aptamer bioconjugates can diminish the toxicity of mercury in vivo. Toxicol Lett 208(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwaraknath S, Bhahdigadi S, Rao P, Kiel JL, Andrews CJ (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thruingiensis spores. J Fluoresc 17(2):193–199

    Article  CAS  PubMed  Google Scholar 

  • Jahanbani S, Benvidi A (2016) Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosens Bioelectron 15(85):553–562

    Article  CAS  PubMed  Google Scholar 

  • Jones RM, Nicas M, Hubbard A, Sylvester MD, Reingold A (2005) The infectious dose of Francisella Tularensis (Tularemia). Appl Biosafety. https://doi.org/10.1177/153567600501000405

    Article  Google Scholar 

  • Joshi R, Janagama H, Dwivedi HP et al (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23:20–28

    Article  CAS  PubMed  Google Scholar 

  • Jyoti A, Vajpayee P, Singh G et al (2011) Identification of environmental reservoirs of nontyphoidal salmonellosis: aptamer-assisted bioconcentration and subsequent detection of Salmonella typhimurium by quantitative polymerase chain reaction. Environ Sci Technol 45:8996–9002

    Article  CAS  Google Scholar 

  • Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Um HJ, Bang S, Lee SH, Oh SJ, Han JH, Kim KW, Min J, Kim YH (2009) Arsenic removal from Vietnamese groundwater using the arsenic-binding DNA aptamer. Environ Sci Technol 43(24):9335–9340

    Article  CAS  PubMed  Google Scholar 

  • Kolovskaya OS, Zamay TN, Zamay AS, Glazyrin YE, Spivak EA, Zubkova OA, Kadkina AV, Erkaev EN, Zamay GS, Savitskaya AG, Trufanova LV, Petrova LL, Berezovski MV (2014) DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells. Biochem Moscow Suppl Ser A 8:60

    Article  Google Scholar 

  • Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA, Zamay TN, Berezovski MV (2012a) Aptamer-based impedimetric sensor for bacterial typing. Anal Chem 84:8114–8117

    Article  CAS  PubMed  Google Scholar 

  • Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA (2012b) Aptamer-based viability impedimetric sensor for bacteria. Anal Chem 84(21):8966–8969

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim BC, Kim KW et al (2009) A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosens Bioelectron 24:3550–3555

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li B, Qi Y, Jin Y (2009) Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 393(8):2051–2057

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang X (2015) Aptamer-based technology for food analysis. Appl Biochem Biotechnol 175(1):603–624

    Article  PubMed  CAS  Google Scholar 

  • Lou X, Qian J, Xiao Y, Viel L, Gerdonb AE, Lagallya ET, Atzbergerc P, Tarasowd TM, Heegera AJ, Soha HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci U S A 106(9):2989–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5:7796–7804

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wang W, Chen X et al (2014) Selection, identification, and application of aflatoxin B1 aptamer. Eur Food Res Technol 238(6):919–925

    Article  CAS  Google Scholar 

  • Malhotra S, Pandey AK, Rajput YS, Sharma R (2014) Selection of aptamers for aflatoxin M1 and their characterization. J Mol Recognit 27(8):493–500

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC (2012) Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137(6):1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Marton S, Cleto F, Krieger MA, Cardoso J (2016) Isolation of an Aptamer that binds specifically to E. coli. PLoS One 11(4):e0153637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKeague M, Bradley CR, de Girolamo A, Visconti A, David Miller J, de Rosa MC (2010) Screening and initial binding assessment of fumonisin B1 aptamers. Int J Mol Sci 11(12):4864–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeague M, Velu R, Hill K, Bardóczy V, Mészáros T, DeRosa M (2014) Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin a. Toxins 6(8):2435–2452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morton SL, Tindall DR (1996) Determination of okadaic acid content of dinoflagellate cells: a comparison of the HPLC-fluorescent method and two monoclonal antibody ELISA test kits. Toxicon 34(8):947–954

    Article  CAS  PubMed  Google Scholar 

  • Nakamura C, Kobayashi T, Miyake M, Shirai M, Miyake J (2001) Usage of a DNA aptamer as a ligand targeting microcystin. Mol Cryst Liq Cryst Sci Technol Sect A 371(1):369–374

    Article  CAS  Google Scholar 

  • Nikolaus N, Strehlitz B (2014) DNA-Aptamers binding aminoglycoside antibiotics. Sensors (Basel) 14:3737–3755. https://doi.org/10.3390/s140203737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugen SR, Baeumner AJ (2008) Trends and opportunities in food pathogen detection. Anal Bioanal Chem 391(2):451–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Q, Zhang XL, Wu HY et al (2005) Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar Typhi. Antimicrob Agents Chemother 49:4052–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang S, Labuza TP, He L (2014) Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst 139(8):1895–1901

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Ling M, Ning Y, Deng L (2014) Rapid fluorescent detection of Escherichia coli K88 based on DNA aptamer library as direct and specific reporter combined with immuno-magnetic separation. J Fluoresc 24:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Petzinger E, Ziegler K (2000) Ochratoxin a from a toxicological perspective. J Vet Pharmacol Ther 23(2):91–98

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Zheng R, Ma Z et al (2009) The selection and application of ssDNA aptamers against MPT64 protein in Mycobacterium tuberculosis. Clin Chem Lab Med 47:405–411

    Google Scholar 

  • Rotherham LS, Maserumule C, Dheda K et al (2012) Selection and application of ssDNA aptamers to detect active TB from sputum samples. PLoS One 7:e46862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Barui AK, Rajput YS (2015) Aptamer specific for cefquinome. Indian patent 1775/DEL/2015

    Google Scholar 

  • Shipley SLS, White E, Kim SK (2010) Selection of aptamers against live E. Coli cells using cell SELEX. FASEB J 24(1): Supplement. 907.14

    Google Scholar 

  • Singh G, Vajpayee P, Rani N et al (2012) Bio-capture of S. Typhimurium from surface water by aptamer for culture-free quantification. Ecotoxicol Environ Saf 78:320–326

    Article  CAS  PubMed  Google Scholar 

  • Sinha J, Reyes SJ, Gallivan JP (2010) Reprogramming bacteria to seek and destroy an herbicide. Nat Chem Biol 6(6):464–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So HM, Park DW, Jeon EK et al (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4:197–201

    Article  CAS  PubMed  Google Scholar 

  • Stead SL, Ashwin H, Johnston B et al (2010) An RNA-aptamer-based assay for the detection and analysis of malachite green and leucomalachite green residues in fish tissue. Anal Chem 82(7):2652–2660

    Article  CAS  PubMed  Google Scholar 

  • Stratis-Cullum DN, McMasters S, Pellegrino PM (2009) Evaluation of relative aptamer binding to campylobacter jejuni bacteria using affinity probe capillary electrophoresis. Anal Lett 42(15):2389–2402

    Google Scholar 

  • Tombelli S, Minunni M, Luzi E, Mascini M (2007) Aptamer-based biosensors for the detection of HIV-1 tat protein. Bioelectrochemistry 67:135–141

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Vivekananda J, Kiel JL (2006) Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-linked immobilized sorbent assay. Lab Investig 86:610–618

    Article  CAS  PubMed  Google Scholar 

  • Vivekananda J, Salgado C, Millenbaugh NJ (2014) DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem Biophys Res Commun 444:433–438

    Article  CAS  PubMed  Google Scholar 

  • Wang KY, Zeng YL, Yang XY et al (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:273–278

    Article  CAS  Google Scholar 

  • Wang R, Zhao J, Jiang T et al (2013) Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods 189:362–369

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu J, Yong W, Chen Q, Zhang L, Dong Y et al (2015) A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey. Talanta 131:562–569

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R (2016) Selection and characterization of DNA aptamers for the development of light-up biosensor to detect cd(II). Talanta 154:498–503

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto C, Sen T (2008) Nucleic acids ligands capable of binding to internalin B or internalin A. Internation Application Published under the patent cooperation treaty, WO2008/011608A2

    Google Scholar 

  • Yamamoto C, Sen T (2009) Nucleic acids ligands capable of binding to internalin B or internalin A. US Patent Application Publication, (October, 2009) US20090264512A1

    Google Scholar 

  • Yamamoto C, Sen T (2010) Aptamers that bind to Listeria surface proteins. US Patent Application Publication, (January, 2010) US7645582B2

    Google Scholar 

  • Yang X, Qian J, Jiang L, Yan Y, Wang K, Liu Q, Wang K (2014) Ultrasensitive electrochemical apta-sensor of ochratoxin a based on two level cascades signal amplification strategy. Bioelectrochemistry 96:7–13

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Gan N, Wang D, Cao Y, Chen M, Li T et al (2016) A “signal-on” aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers. Biosens Bioelectron 74:718–724

    Article  CAS  PubMed  Google Scholar 

  • Zelada-Guillén GA, Riu J, Düzgün A, Rius FX (2009) Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed 48:7334–7337

    Google Scholar 

  • Zelada-Guillen GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82(22):9254–9260

    Google Scholar 

  • Zheng X, Hu B, Gao SX, Liu DJ, Sun MJ, Wang LH et al (2013) A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon 101:41–47

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Neff CP, Swiderski P et al (2012) Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther 21:192–200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, G.S., Parashar, A., Aggarwal, N.K. (2019). Aptamer: A Next Generation Tool for Application in Agricultural Industry for Food Safety. In: Yadav, G., Kumar, V., Aggarwal, N. (eds) Aptamers. Springer, Singapore. https://doi.org/10.1007/978-981-13-8836-1_12

Download citation

Publish with us

Policies and ethics