Skip to main content

Enzymatic Approaches for the Synthesis of High Fructose Syrup

  • Chapter
  • First Online:
Plant Biotechnology: Recent Advancements and Developments

Abstract

Fructose is a monosaccharide widely used for food, pharmaceutical, and medical applications. Such ubiquity can be ascribed to its various superior technical properties over the conventional sugar, sucrose, and many beneficial roles in the human body. High fructose syrup (HFS) can be synthesized from starch or inulin using enzymatic/chemical methods. A well-known conventional approach is the hydrolysis of starch using amylolytic enzymes and subsequent isomerization of dextrose to fructose by glucose isomerase. The product yield by this method is only 42% and the product mixture also contains 50% dextrose and 8% other saccharides. HFS can also be produced from inulin by a single-step method using inulinases. In the single-step enzymatic method, inulinase acts sequentially on β-(2, 1) linkages of inulin to release the fructose units. By this method approximately 95% fructose yield can be obtained. Acid hydrolysis of inulin/starch is not recommended because it imparts color to the product and a few undesired products, like difructose anhydride, are also formed. In the present chapter, enzymatic approaches are described for the preparation of HFS from starch and inulin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abasaeed AE, Asif M, Fakeeha AH (1999) Zeolite-catalysed hydrolysis of inulin to fructose in a fluidized bed reactor. Bioprocess Eng 20:343–348

    Article  CAS  Google Scholar 

  • Abdullah M, Fleming ID, Taylor M, Whelan WJ (1963) Substrate specificity of the amyloglucosidase of Aspergillus niger. Biochem J 89:35–36

    Google Scholar 

  • Akabori S, Nehara K, Muramatsu I (1952) Biochemical formation of tetrose, pentose and hexose. J Chem Soc Jpn 73:311

    Google Scholar 

  • Anes J, Fernandes P (2014) Towards the continuous production of fructose syrups from inulin using inulinase entrapped in PVA-based particles. Biocatal Agric Biotechnol 3:296–302

    Google Scholar 

  • Ayyachamy M, Khelawan K, Pillay D, Permaul K, Singh S (2007) Production of inulinase by Xanthomonas campestris pv. phaseoli using onion (Allium cepa) and garlic (Allium sativum) peels in solid state cultivation. Lett Appl Microbiol 45:439–444

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P, Margaritis A (1985a) Production of high fructose syrup from Jerusalem artichoke tubers using Kluyveromyces marxianus cells immobilized in agar gel. J Gen Appl Microbiol 31:305–311

    Article  CAS  Google Scholar 

  • Bajpai P, Margaritis A (1985b) Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatine matrix: 1. Preparation and enzymatic properties. Enzym Microb Technol 7:373–376

    Article  CAS  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1991) Production of inulinase by a new mold of Penicillum rugulosum. J Ferment Bioeng 72:491–494

    Article  CAS  Google Scholar 

  • Blecker CS, Chevalier JP, Fougnies C, Van Herck JC, Deroanne C, Paquot M (2003) Characterisation of different inulin samples by DSC: influence of polymerisation degree on melting temperature. J Therm Anal Calorim 71:215–224

    Article  CAS  Google Scholar 

  • Bonciu CN, Constantin O, Bahrim G (2012) Increase in extracellular inulinase production for a new Rhizoctonia sp. strain by using buckwheat (Fagopyrum esculentum) flour as a single carbon source. Lett Appl Microbiol 55:195–201

    Article  CAS  Google Scholar 

  • Braz de Oliveira AJ, Correia Goncalves RA, Cantuaria Chierrito TP et al (2011) Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana (Bert.) Bertoni Food Chem 129:305–311

    Article  CAS  Google Scholar 

  • Brevnova EE, Kozlov DG, Efremov BD, Benevolensky SV (1998) Inulinase-secreting strain of Saccharomyces cerevisiae produces fructose. Biotechnol Bioeng 60:492–497

    Article  CAS  PubMed  Google Scholar 

  • Catana R, Ferreira BS, Cabral JMS, Fernandes P (2005) Immobilization of inulinase for sucrose hydrolysis. Food Chem 91:517–520

    Article  CAS  Google Scholar 

  • Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102:4295–4303

    Article  CAS  PubMed  Google Scholar 

  • Coghetto CC, Scherer RP, Silva MF, Golunski S et al (2012) Natural montmorillonite as support for the immobilization of inulinase from Kluyveromyces marxianus NRRL Y-7571. Biocatalyst Agric Biotechnol 1:284–289

    CAS  Google Scholar 

  • Cruz VD, Belote JG, Belline MZ, Cruz R (1998) Production and action pattern of inulinase from Aspergillus niger-245: hydrolysis of inulin from several sources. Rev Microbiol 29:301–306

    Article  CAS  Google Scholar 

  • Cruz-guerrero A, Garcia-Pena I, Barzana E et al (1995) Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyperproducing strain. J Ferment Bioeng 80:159–163

    Article  CAS  Google Scholar 

  • De Andrade AVM, Ferreira MSS, Kennedy JF (1992) Selective fructose production by utilization of glucose liberated during the growth of Cladosporium cladosporioides on inulin or sucrose. Carbohydr Polym 18:59–62

    Article  Google Scholar 

  • De Carvalho MAM, Dietrich SMC (1993) Variation in fructan content in the underground organs of Vernonia herbacea (veil.) rusby at different phenological phases. New Phytol 123:735–740

    Article  Google Scholar 

  • De Leenheer L (2007) Production and use of inulin: industrial reality with a promising future. In: van Bekkum H, Röper H, Voragen F (eds) Carbohydrates as organic raw materials III. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 67–92

    Google Scholar 

  • De Leenheer L, Hoebregs H (1994) Progress in elucidation of the composition of chicory inulin. Starch 46:193–196

    Google Scholar 

  • Diaz EG, Catana R, Ferreira BS, Luque S et al (2006) Towards the development of a membrane reactor for enzymatic inulin hydrolysis. J Membr Sci 273:152–158

    Article  CAS  Google Scholar 

  • Dolota A, Dabrowska B (2004) Raw fibre and inulin content in roots of different Scorzonera cultivars (Scorzonera hispanica L.) depending on cultivation method. Folia Hortic 16:31–37

    Google Scholar 

  • Edelman J, Jefford T (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67:517–531

    Article  CAS  Google Scholar 

  • Ertan F, Ekinci F, Aktac T (2003) Production of inulinases from Penicillium spinulosum, Aspergillus parasiticus NRRL 2999 and Trichoderma viride. Pak J Biol Sci 6:1332–1335

    Article  Google Scholar 

  • Ettalibi M, Baratti JC (1987) Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Appl Microbiol Biotechnol 26:13–20

    Article  CAS  Google Scholar 

  • Ferreira MSS, Andrade AVMD, Kennedy JF (1991) Properties of a thermostable non-specific fructofuranosidase produced by Cladosporium cladosporioides cells for hydrolysis of Jerusalem artichoke extract. Appl Biochem Biotechnol 31:1–9

    Google Scholar 

  • Fontana JD, Baron M, Diniz ACP, Franco VC (1994) Microbial inulinase secretion using chemically modified inulins. Appl Biochem Biotechnol 45:257–268

    Article  Google Scholar 

  • Franck A, De Leenheer L (2005) Inulin. In: Steinbüchel A (ed) Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 439–473

    Google Scholar 

  • García-Aguirre M, Saenz-Alvaro VA, Rodri’Guez-Soto MA et al (2009) Strategy for biotechnological process design applied to the enzymatic hydrolysis of agave fructo-oligosaccharides to obtain fructose-rich syrups. J Agric Food Chem 57:10205–10210

    Google Scholar 

  • Gern RMM, Furlan SA, Ninow JL, Jonas R (2001) Screening for microorganisms that produce only endoinulinase. Appl Microbiol Biotechnol 55:632–635

    Article  CAS  PubMed  Google Scholar 

  • Gill PK, Manhas RK, Singh P (2006) Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. J Food Eng 76:369–375

    Article  CAS  Google Scholar 

  • Guiraud JP, Bourgi J, Stervinou M, Chaisse M, Galzy P (1987) Isolation of a respiratory-deficient Kluyveromyces fragilis mutant for the production of ethanol from Jerusalem artichoke. Biotechnol Bioeng 29:850–858

    Article  CAS  PubMed  Google Scholar 

  • Guiraud JP, Demeulle S, Galzy P (1981) Inulin hydrolysis by the Debaryomyces phaffii inulinase immobilized on DEAE cellulose. Biotechnol Lett 3:683–688

    Article  CAS  Google Scholar 

  • Gupta AK, Kaur M, Kaur N, Singh R (1992) A comparison of properties of inulinases of Fusarium oxysporum immobilised on various supports. J Chem Technol Biotechnol 53:293–296

    Article  CAS  Google Scholar 

  • Gupta AK, Kaur N (1997) Fructan storing plants – a potential source of high fructose syrups. J Sci Ind Res 56:447–452

    CAS  Google Scholar 

  • Gupta AK, Kaur N, Singh R (1989) Fructose and inulinase production from waste Cichorium intybus roots. Biol Wastes 29:73–77

    Article  CAS  Google Scholar 

  • Gupta AK, Rathore P, Kaur N, Singh R (1990) Production, thermal stability and immobilization of inulinase from Fusarium oxysporum. J Chem Technol Biotechnol 47:245–257

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Singh DP, Kaur N, Singh R (1994) Production, purification and immobilization of inulinase from Kluyveromyces fragilis. J Chem Technol Biotechnol 59:377–385

    Article  CAS  Google Scholar 

  • Hanover LM, White JS (1993) Manufacturing, composition and applications of fructose. Am J Clin Nutr 58:724S–732S

    CAS  PubMed  Google Scholar 

  • Hebeda RE (1993) Starches, sugars, and syrups. In: Nagodawithana T, Reed G (eds) Enzymes in food processing. Elsevier, London, pp 321–346

    Chapter  Google Scholar 

  • Hebeda RE, Styrlund CR, Teague WM (1988) A kinetic model of Bacillus stearothermophilus α-amylase under process conditions. Starch/Stӓrke 40:412–418

    Article  Google Scholar 

  • Hendry GAF, Wallace RK (1993) The origin, distribution, and evolutionary significance of fructans. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 119–139

    Google Scholar 

  • Hofer K, Jenewein D (1999) Enzymatic determination of inulin in food and dietary supplements. Eur Food Res Technol 209:423–427

    Article  CAS  Google Scholar 

  • Imran S, Gillis RB, Kok MS, Harding SE, Adams GG (2012) Application and use of inulin as a tool for therapeutic drug delivery. Biotechnol Genet Eng Rev 28:33–45

    Article  CAS  PubMed  Google Scholar 

  • Isejima EM, Figueiredo-Ribeiro RCL, Zaidan LBP (1991) Fructan composition in adventitious tuberous roots of Viguiera discolor baker (asteraceae) as influenced by daylength. New Phytol 119:149–154

    Article  CAS  Google Scholar 

  • Jensen BF, Norman BE (1984) Bacillus acidopullulyticus pullulanase: application and regulatory aspects for use in the food industry. Process Biochem 19:129–134

    Google Scholar 

  • Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25:165–212

    Article  CAS  Google Scholar 

  • Kato I (2000) Antitumour activity of lactic acid bacteria. In: Fuller R, Perdigon G (eds) Probiotics. Kluwer Academic Publishers, Dordrecht, pp 115–138

    Google Scholar 

  • Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci 27:703–714

    Article  CAS  PubMed  Google Scholar 

  • Kim BW, Kim HW, Nam SW (1997) Continuous production of fructose-syrups from inulin by immobilized inulinase from recombinant Saccharomyces cerevisiae. Biotechnol Bioprocess Eng 2:90–93

    Article  Google Scholar 

  • Kim CH, Rhee SK (1989) Fructose production from Jerusalem artichoke by inulinase immobilized on chitin. Biotechnol Lett 11:201–206

    Article  CAS  Google Scholar 

  • Kim WY, Byun SM (1982) Hydrolysis of inulin from Jerusalem artichoke by inulinase immobilized on aminoethylcellulose. Enzym Microb Technol 4:239–244

    Article  CAS  Google Scholar 

  • Kruger CL (2002) Generally recognised as safe (GRAS) notification for Frutafit®. Silver Spring, MD, U.S. Food and Drug Administration, USA

    Google Scholar 

  • Kuniyal C, Rawat Y, Oinam S, Kuniyal J, Vishvakarma S (2005) Kuth (Saussurea lappa) cultivation in the cold desert environment of the Lahaul valley, northwestern Himalaya, India: arising threats and needs to revive socio-economic values. Biodivers Conserv 14:1035–1045

    Article  Google Scholar 

  • Leroy G, Grongnet JF, Mabeau S, Le Corre D, Baty-Julien C (2010) Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. J Sci Food Agric 90:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler FW, Brust A, Cuny E (2001) Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from D-fructose and isomaltulose. Green Chem 3:201–209

    Article  CAS  Google Scholar 

  • López-Molina D, Navarro-Martínez MD, Rojas-Melgarejo F et al (2005) Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.) Phytochemistry 66:1476–1484

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud DAR, Mahdy ESME, Shousha WGH et al (2011) Raw garlic as a new substrate for inulinase production in comparison to dry garlic. Aust J Basic Appl Sci 5:453–462

    CAS  Google Scholar 

  • Mansouri S, Houbraken J, Samson RA, Frisvad JC et al (2013) Penicillium subrubescens, a new species efficiently producing inulinase. A Van Leeuw 103:1343–1357

    Google Scholar 

  • Manzoni M, Cavazzoni V (1992) Hydrolysis of topinambur (Jerusalem artichoke) fructans by extracellular inulinase of Kluyveromyces marxianus var. bulgaricus. J Chem Technol Biotechnol 54:311–315

    Article  CAS  Google Scholar 

  • Mensink MA, Frijlink HW, van der Maarschalk V, WLJ H (2015) Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr Polym 130:405–419

    Article  CAS  PubMed  Google Scholar 

  • Missau J, Scheid AJ, Foletto EL, Jahn SL, Mazutti MA, Kuhn RC (2014) Immobilization of commercial inulinase on alginate-chitosan beads. Sustain Chem Process 2:13

    Article  CAS  Google Scholar 

  • Mukherjee K, Sengupta S (1985) The production of constitutive invertase and inulinase by the mushroom Panaeolus papillonaceus in submerged culture. Can J Microbiol 31:773–777

    Article  CAS  Google Scholar 

  • Mutanda T, Wilhelmi B, Whkteley CG (2009) Controlled production of fructose by an exoinulinase from Aspergillus ficuum. Appl Biochem Biotechnol 159:65–77

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Kuramori K, Zaita N, Akimoto H, Ohta K (2001) Purification and properties of intracellular exo- and endoinulinases from Aspergillus niger strain 12. Bull Faculty Agric Miyazaki Univ 48:49–58

    CAS  Google Scholar 

  • Nakamura T, Ogata Y, Shitara A, Nakamura A, Ohta K (1995) Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. J Ferment Bioeng 80:164–169

    Article  CAS  Google Scholar 

  • Öngen-Baysal G, Sukan SS (1996) Production of inulinase by mixed culture of Aspergillus niger and Kluyveromyces marxianus. Biotechnol Lett 18:1431–1434

    Article  Google Scholar 

  • Orlando R, Floreani M, Padrini R, Palatini P (1998) Determination of inulin clearance by bolus intravenous injection in healthy subjects and ascitic patients: equivalence of systemic and renal clearances as glomerular filtration markers. Brit J Clin Pharmacol 46:605–609

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases, its production, properties and industrial applications. Appl Biochem Biotechnol 81:35–52

    Article  CAS  PubMed  Google Scholar 

  • Parekh SR, Margaritis A (1986) Application of immobilized cells of Kluyveromyces marxianus for continuous hydrolysis to fructose of fructans in Jerusalem artichoke extracts. Int J Food Sci Technol 21:509–515

    Article  Google Scholar 

  • Partida VZ, Lopez AC, Gomez AJM (December 8, 1998) Method of producing fructose syrup from agave plants. US patent 5,84,6333

    Google Scholar 

  • Paula FC, Cazetta ML, Monti R, Contiero J (2007) Screening of supports for Kluyveromyces marxianus var. bulgaricus inulinase immobilization. Curr Trends Biotechnol Pharm 1:34–40

    Google Scholar 

  • Pawan GLS (1973) Fructose. In: Birch GG, Green LF (eds) Molecular structure and function of food carbohydrates. Applied Science Publishers, London, pp 65–80

    Google Scholar 

  • Pessoni RAB, Figueiredo-Ribeiro RCL, Braga MR (1999) Extracellular inulinases from Penicillium janczewskii, a fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae). J Appl Microbiol 87:141–147

    Article  CAS  PubMed  Google Scholar 

  • Rawat HK, Ganaie MA, Kango N (2015) Production of inulinase, fructosyltransferase and sucrose from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides. A Van Leeuw 107:799–811

    Article  CAS  Google Scholar 

  • Rawat HK, Soni H, Treichel H, Kango N (2016) Biotechnological potential of microbial inulinases: recent perspective. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1147419. (Epub ahead of print)

    PubMed  Google Scholar 

  • Ribeiro EM, Fernanades P (2013) Coated-wall mini reactor for inulin hydrolysis. Curr Biol 2:47–52

    CAS  Google Scholar 

  • Ricca E, Calabrò V, Curcio S, Basso A, Gardossi L, Iorio G (2010) Fructose production by inulinase covalently immobilized on sepabeads in batch and fluidized bed bioreactor. Int J Mol Sci 11:1180–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricca E, Calabrò V, Curcio S, Iorio G (2007) The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit Rev Biotechnol 27:129–145

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid M, Gibson GR, Delzenne N (1993) Biochemistry of oligofructose, a non-digestible fructo-oligosaccharide: an approach to estimate its caloric value. Nutr Rev 151:137–146

    Google Scholar 

  • Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr 137:2493S–2502S

    CAS  PubMed  Google Scholar 

  • Ronkart SN, Blecker CS, Fougnies C, Van Herck JC, Wouters J, Paquot M (2006) Determination of physical changes of inulin related to sorption isotherms: an X-ray diffraction, modulated differential scanning calorimetry and environmental scanning electron microscopy study. Carbohydr Polym 63:210–217

    Article  CAS  Google Scholar 

  • Ronkart SN, Blecker CS, Fourmanoir H et al (2007) Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Anal Chim Acta 604:81–87

    Article  CAS  PubMed  Google Scholar 

  • Rose V (1804) About a peculiar substance. Neues Algem Chem 3:217–219. (in German)

    Google Scholar 

  • Rouwenhorst RJ, Visser VL, Vander AA, Scheffers WA, Dijken JP (1988) Production, distribution and kinetic properties of inulinase on continuous culture of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saber W, El-Naggar N (2009) Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agro-wastes. Biotechnol 8:425–433

    Article  CAS  Google Scholar 

  • Saito K, Tomita F (2000) Difructose anhydrides: their mass production and physiological functions. Biosci Biotechnol Biochem 64:1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Santa GLM, Bernardino SMSA, Magalhães S et al (2011) From inulin to fructose syrups using sol-gel immobilized inulinase. Appl Biochem Biotechnol 165:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sarchami T, Rehmann L (2015) Optimizing acid hydrolysis of Jerusalem artichoke-derived inulin for fermentative butanol production. Biol Res 8:1148–1157

    CAS  Google Scholar 

  • Sheng J, Chi Z, Li J, Gao L, Gong F (2007) Inulinases production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinases. Process Biochem 42:805–811

    Google Scholar 

  • Singh RS (2011) Enzymatic preparation of high fructose syrup from inulin. In: Panesar PS, Sharma HK, Sarkar BC (eds) Bioprocessing of foods. Asiatech Publishing Inc, New Delhi, pp 77–98

    Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2007a) Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup. J Microbiol Biotechnol 17:733–738

    CAS  PubMed  Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2007b) Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1. J Ind Microbiol Biotechnol 34:649–655

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2008) Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin. J Ind Microbiol Biotechnol 35:777–782

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Singh RP (2010) Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol Biotechnol 48:435–450

    CAS  Google Scholar 

  • Singh RS, Singh RP (2014) Response surface optimization of endoinulinase production from a cost effective substrate by Bacillus safensis AS-08 for hydrolysis of inulin. Biocatal Agric Biotechnol 3:365–372

    Google Scholar 

  • Singh RS, Singh RP, Kennedy JF (2016) Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Biol Macromol 85:565–572

    Article  CAS  PubMed  Google Scholar 

  • Sirisansaneeyakul S, Worawuthiyanan N, Vanichsriratana W, Srinophakun P, Chisti Y (2007) Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii. World J Microbiol Biotechnol 23:543–552

    Article  CAS  Google Scholar 

  • Takasaki Y, Tanabe O (October 26, 1971) Enzyme method for converting glucose in glucose syrups to fructose. US patent 3,616,221

    Google Scholar 

  • Taper HS, Roberfroid M (1999) Influence of inulin and oligofructose on breast cancer and tumor growth. J Nutr (Suppl) 129:1488–1491

    Google Scholar 

  • Teague WM, Brumm PJ (1992) Commercial enzymes for starch hydrolysis products. In: Schenck FW, Hebeda RE (eds) Starch hydrolysis products: worldwide technology, production and applications. VCH Publishers, New York, pp 45–77

    Google Scholar 

  • Timmermans JW, van Leeuwen MB, Tournois H, de Wit D, Vliegenthart JFG (1994) Quantitative analysis of the molecular weight distribution of inulin by means of anion exchange HPLC with pulsed amperometric detection. J Carbohydr Chem 13:881–888

    Article  CAS  Google Scholar 

  • Treichel H, Oliveria D, Lerin L, Astolfi V et al (2012) A review on the production and partial characterization of microbial inulinases. Global J Biochem 3:7

    Google Scholar 

  • van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W (2007) Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102:452–460

    PubMed  Google Scholar 

  • van Loo L, Coussement P, de Leenheer L, Horbregs H, Smith G (1995) On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit Rev Food Sci Nutr 35:525–552

    Article  PubMed  Google Scholar 

  • Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29:139–174

    Article  CAS  PubMed  Google Scholar 

  • Vergauwen R, Van Laere A, Van den Ende W (2003) Properties of fructan: fructan 1-Fructosyltransferases from chicory and globe thistle, two asteracean plants storing greatly different types of inulin. Pl Physiol 133:391–401

    Article  CAS  Google Scholar 

  • Villegas-Silva PA, Toledano-Thompson T, Canto-Canché BB et al (2014) Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnol 14:14

    Google Scholar 

  • Visser MR, Baert L, Klooster GV, Schueller L et al (2010) Inulin solid dispersion technology to improve the absorption of the BCS class IV drug TMC240. Eur J Pharm Biopharm 74:233–238

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan P, Kulkarni PR (1995) Properties and application of inulinase obtained by fermentation of costus (Saussurea lappa) root powder with Aspergillus niger. Nahrung 39:288–294

    Article  CAS  Google Scholar 

  • Wang J, Zhengyu J, Bo J, Xueming X (2003) Separation and identification of exo- and endoinulinases from Aspergillus ficuum. Curr Microbiol 47:109–112

    Article  CAS  Google Scholar 

  • Wei W, Yu X, Dai Y, Zheng J, Xie Z (1997) Purification and properties of inulinase from Kluyveromyces sp. Y-85. Wei Sheng Wu Xue Bao 37:443–448. (Article in Chinese)

    CAS  PubMed  Google Scholar 

  • Wenling W, Le Huiying WW, Shiyuan W (1999) Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85. Process Biochem 34:643–646

    Article  Google Scholar 

  • Wenling W, Zhaong X, Qian Z, Xinsheng Z (1997) Purification and properties of Penicillium extracellular inulinase. Ind Microbiol 27:8–12

    Google Scholar 

  • Wolfgang W, Südzucker AGM (2004) Fructose. In: Hubert P (ed) Electronic ullmann’s encyclopedia of industrial chemistry, Wiley-VCH GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a12_047.pub2

  • Xiao R, Tanida M, Takao S (1988) Inulinase from Chrysosporium pannorum. J Ferment Technol 66:553–558

    Article  CAS  Google Scholar 

  • Yewale T, Singhal RS, Vaidya AA (2013) Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis. Biocatal & Agric Biotechnol 2:96–101

    Google Scholar 

  • Ylikahari RH, Kahonen MT, Hassinen I (1972) Modification of metabolic effects of ethanol by fructose. Acta Medica Scand Suppl 542:141–150

    Google Scholar 

  • Yu J, Jiang J, Ji W, Li Y, Liu J (2011) Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain. Biotechnol Lett 33:147–152

    Article  CAS  PubMed  Google Scholar 

  • Zhengyu J, Jing W, Bo J, Xueming X (2005) Production of inulooligosaccharides by endoinulinase from Aspergillus ficuum. Food Res Int 38:301–308

    Article  CAS  Google Scholar 

  • Zhou J, Gao Y, Zhang R, Mo M et al (2014) A novel low-temperature-active exo-inulinase identified based on molecular-activity strategy from Sphingobacterium sp. GN25 isolated from feces of Grus nigricollis. Process Biochem 49:1656–1663

    Article  CAS  Google Scholar 

  • Zubaidah E, Akhadiana W (2013) Comparative study of inulin extracts from dahlia, yam, and gembili tubers as prebiotic. Food Nutr Sci 4:8–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Singh, R.S., Chauhan, K., Singh, R.P. (2017). Enzymatic Approaches for the Synthesis of High Fructose Syrup. In: Gahlawat, S., Salar, R., Siwach, P., Duhan, J., Kumar, S., Kaur, P. (eds) Plant Biotechnology: Recent Advancements and Developments. Springer, Singapore. https://doi.org/10.1007/978-981-10-4732-9_10

Download citation

Publish with us

Policies and ethics