Skip to main content
Log in

Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Extracellular exoinulinase from Kluyveromyces marxianus YS-1, which hydrolyzes inulin into fructose, was immobilized on Duolite A568 after partial purification by ethanol precipitation and gel exclusion chromatography on Sephadex G-100. Optimum temperature of immobilized enzyme was 55 °C, which was 5 °C higher than the free enzyme and optimal pH was 5.5. Immobilized biocatalyst retained more than 90% of its original activity after incubation at 60 °C for 3 h, whereas in free form its activity was reduced to 10% under same conditions, showing a significant improvement in the thermal stability of the biocatalyst after immobilization. Apparent K m values for inulin, raffinose and sucrose were found to be 3.75, 28.5 and 30.7 mM, respectively. Activation energy (E a) of the immobilized biocatalyst was found to be 46.8 kJ/mol. Metal ions like Co2+ and Mn2+ enhanced the activity, whereas Hg2+ and Ag2+ were found to be potent inhibitors even at lower concentrations of 1 mM. Immobilized biocatalyst was effectively used in batch preparation of high fructose syrup from Asparagus racemosus raw inulin and pure inulin, which yielded 39.2 and 40.2 g/L of fructose in 4 h; it was 85.5 and 92.6% of total reducing sugars produced, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anonymous FAO quarterly bulletin of statistics. OfficialWebsite of FAO, Rome, Italy; 2003 http://www.fao.org/

  2. Bajpai P, Margaritis A (1985) Immobilization of K. marxianus cells containing activity in open pore gelatin matrix: application for high fructose syrup production. Enzyme Microb Technol 7:459–461

    Article  CAS  Google Scholar 

  3. Bajpai P, Margaritis A (1987) Characterization of molecular-sieve-bound inulinase. J Fermen Technol 65(20):239–242

    Article  CAS  Google Scholar 

  4. Byun SM, Nahm BH (1978) Production of fructose from Jerusalem artichoke by enzymatic hydrolysis. J Food Sci 43:1871–1873

    Article  CAS  Google Scholar 

  5. Catana R, Eloy M, Rocha JR, Ferreira BS, Cabral JMS, Ferdenandes P (2007) Stability evaluation of an immobilized enzyme system for inulin hydrolysis. Food Chem 101:260–266

    Article  CAS  Google Scholar 

  6. Ettalibi M, Baratti JC (1990) Molecular and kinetic properties of Aspergillus ficuum inulinases. Agric Biol Chem 54:61–68

    CAS  Google Scholar 

  7. Ettalibi M, Baratti JC (1992) Immobilization of Aspergillus ficuum inulinases on porous glass. Biocatalysis 5:175–182

    CAS  Google Scholar 

  8. Guiraud JP, Bajon AM, Chautard P, Galzy P (1983) Inulin hydrolysis by an immobilized yeast cell reactor. Enzyme Microb Technol 5:185–190

    Article  CAS  Google Scholar 

  9. Guiraud JP, Galzy P (1981) Enzymatic hydrolysis of plant extracts containing inulin. Enzyme Microb Technol 3:305–308

    Article  CAS  Google Scholar 

  10. Gupta AK, Kaur N (1997) Fructan storing plants––a potential source of high fructose syrups. J Sci Ind Res 56:447–452

    CAS  Google Scholar 

  11. Gupta AK, Nagpal B, Kaur N, Singh R (1988) Mycelial and extracellular inulinases from Fusarium oxysporum grown on aquous extract of Cichorium intybus roots. J Chem Technol Biotechnol 42:69–76

    Article  CAS  Google Scholar 

  12. Hanover L, White J (1993) Manufacturing, composing and applications of fructose. Am J Clin Nutr 5:7248–7328

    Google Scholar 

  13. Jeung CY, Sinha J, Pil Park J, Won Yun Y (2001) Production of inulooligosaccharides from inulin by a dual endoinulinase system. Enzyme Microb Technol 29:428–433

    Article  Google Scholar 

  14. Kim CH, Kim HJ, Choi WB, Nam SW (2006) Inulooligosaccharide production from inulin by Saccharomyces cerevisiae strain displaying cell surface endoinulinase. J Microbiol Biotechnol 16:360–367

    CAS  Google Scholar 

  15. Kim CH, Rhee RK (1989) Fructose production from Jerusalem artichoke by inulinase immobilized in chitin. Biotechnol Lett 11:201–206

    Article  CAS  Google Scholar 

  16. Kim WY, Byun SM (1982) Hydrolysis of inulin from Jerusalem artichoke by inulinase immobilized on aminoethylcellulose. Enzyme Microb Technol 4:239–244

    Article  CAS  Google Scholar 

  17. Kim WY, Byun SM, Uhm TB (1982) Hydrolysis of inulin from Jerusalem artichoke by inulinase immobilized on aminoethylcellulose. Enzyme Microb Technol 4:239–244

    Article  CAS  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  19. Manzoni M, Cavazzoni V (1992) Hydrolysis of topinamber (Jerusalem artichoke) fructans by extracellular inulinase of Kluyveromyces marxianus var. bulgaricus. J Chem Technol Biotechnol 54:311–315

    Article  CAS  Google Scholar 

  20. Matsumoto K, Yamazaki H (1986) Production of fructose syrups. US Patent 4613377

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  22. Peters, Peter JH, Kerkhoofs PL (1983) Preparation and immobilization of inulinase US Patent 4397949

  23. Singh RS, Dhaliwal R, Puri M (2006a) Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Proc Biochem 41:1703–1707

    Article  CAS  Google Scholar 

  24. Singh RS, Dhaliwal R, Puri M (2006b) Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for the preparation of high fructose syrup. J Microbiol Biotechnol 17:733–738

    Google Scholar 

  25. Singh RS, Sooch B, Puri M (2007) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS1. Bioresour Technol 98:2518–2525

    Article  CAS  Google Scholar 

  26. Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29:139–176

    Article  CAS  Google Scholar 

  27. Viswanathan P, Kulkarni PR (1995) Properties and application of inulinase obtained by fermentation of costus (Saussurea lappa) roots powder with Aspergillus niger. Nahrung 39:288–294

    Article  CAS  Google Scholar 

  28. Wenling W, Huiying WWL, Shiyuan W (1999) Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85. Proc Biochem 34:643–646

    Article  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the Department of Biotechnology, Punjabi University, Patiala for providing necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sarup Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.S., Dhaliwal, R. & Puri, M. Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1. J Ind Microbiol Biotechnol 34, 649–655 (2007). https://doi.org/10.1007/s10295-007-0237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0237-1

Keywords

Navigation