Skip to main content

Halophiles, Continental Evaporites and the Search for Biosignatures in Environmental Analogues for Mars

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

Abstract

In the current decade, two Martian missions are planned by NASA and ESA having as primary target the search for possible signs of past or present life: Mars Science Laboratory (MSL), which is part of NASA’s Mars Exploration Program, and the ExoMars of ESA’s Aurora Programme. The reasons that make Mars of special interest from an astrobiological perspective include its nearness, some of the present-day physical characteristics of the planet’s surface, and its geological history. Mars seems to have experienced earthlike conditions in its geological past, with lots of liquid water (Squyres and Kasting, 1994; Hynek and Phillips, 2003; Baker, 2006) that was able to produce the depositional processes and the erosional features described in different regions. Recently formed water features have also been described (e.g., gullies on cliffs and crater walls, Malin and Edgett, 2000), and they suggest that near surface, liquid water may episodically be present currently. Other conditions suitable for life (for example: a warmer climate) likely characterized the planet during the earlier phases of its geological history. Periods with a possible robust greenhouse warming may have taken place in the early Mars, during the Late Noachian-Hesperian period, through the combined effect in the atmosphere of gases, such as CO2, NH3, and CH4, which might have maintained a surface temperature above the freezing point of water (Beaty et al., 2005). The finding – by rovers and, remotely, by orbiters and spectrometers – of salt- (especially hydrated sulfate) rich deposits in different areas of the Martian surface (Squyres et al., 2004; Vaniman et al., 2004; Gendrin et al., 2005; Langevin et al., 2005) is a further indication of past aqueous processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

6. References

  • Alsharhan AS, Kendall GCStC (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Sci Rev 61:191–243

    Article  ADS  Google Scholar 

  • Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34:357–360

    Article  ADS  Google Scholar 

  • Baker VR (2006) Geomorphological evidence for water on Mars. Elements 2:139–143

    Article  Google Scholar 

  • Barbieri R, Stivaletta N, Marinangeli L, Ori GG (2006) Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet Space Sci 54:726–736

    Article  ADS  Google Scholar 

  • Barbieri R, Cavalazzi B, Stivaletta N, Capaccioni B (2009) Life at the extreme: physical environments and microorganisms in the Atacama region (Chile). In: Rossi PL (ed) Geological constraints on the onset and evolution of an extreme environment: the Atacama area. GeoActa Special Publication, 2, pp 141–153

    Google Scholar 

  • Barbieri R, Stivaletta N (2011) Continental evaporites and the search for evidence of life on Mars. Geol J 46:513–524

    Google Scholar 

  • Battista JR (1997) AGAINST ALL ODDS: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224

    Article  Google Scholar 

  • Beaty DW, Clifford SM, Borg LE, Catling DC, Craddock RA, Des Marais DJ, Farmer JD, Frey HV, Haberle RM, McKay CP, Newsom HE, Parker TJ, Segura T, Tanaka KL (2005) Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life. Astrobiology 5:663–689

    Article  ADS  Google Scholar 

  • Billi D, Potts M (2002) Life and death in dried prokaryotes. Res Microbiol 153:7–12

    Article  ADS  Google Scholar 

  • Blackmond DG (2010) The origin of biological homochirality. Cold Spring Harb Perspect Biol 2. doi:10.1101/cshperspect.a002147

  • Bryant RG, Drake NA, Millington AC, Sellwood BW (1994) The chemical evolution of the brines of Chott el Djerid, southern Tunisia, after an exceptional rainfall event in January 1990. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient saline lakes. SEPM (Society for Sedimentary Geology) Special Publication, 50, pp 3–12

    Google Scholar 

  • Buczynski C, Chafetz HS (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sediment Petrol 61:226–233

    Google Scholar 

  • Carter J, Poulet F, Bibring J-P, Murchie S (2010) Detection of hydrated silicates in crustal outcrops in the Northern Plains of Mars. Science 328:1682–1686

    Article  ADS  Google Scholar 

  • Crowley JK, Hook SJ (1996) Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images. J Gephys Res 101:643–660

    Article  ADS  Google Scholar 

  • Davila A, Gomez-Silva B, De Los Rios A, Ascaso C, Olivares H, McKay CP, Wierzchos J (2008) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J Geophys Res 113:G01028

    Article  Google Scholar 

  • Demergasso C, Chong G, Galleguillos P, Escudero L, Martínez-Alonso M, Esteve I (2003) Microbial mats from the Llamará salt flat, northern Chile. Rev Chil Hist Nat 76:485–499

    Article  Google Scholar 

  • Dombrowski H (1963) Bacteria from Paleozoic salt deposits. Ann N Y Acad Sci 108:453–460

    Article  ADS  Google Scholar 

  • Douglas S, Yang H (2002) Mineral biosignatures in evaporites: presence of rosickyite in an endoevaporitic microbial community from Death Valley, California. Geology 30:1075–1078

    Article  ADS  Google Scholar 

  • Douglas S, Abbey W, Mielke R, Conrad P, Kanik I (2008) Textural and mineralogical biosignatures in an unusual microbialite from Death Valley, California. Icarus 193:620–636

    Article  ADS  Google Scholar 

  • Drake NA, Bryant NG, Millington AC, Townshend JRG (1994) Playa sedimentology and geomorphology mixture modelling applied to Landsat thematic mapper data of Chott el Djerid, Tunisia. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient saline lakes. SEPM (Society for Sedimentary Geology) Special Publication, 50, pp 125–134

    Google Scholar 

  • Elwood Madden ME, Bodnar RJ, Rimstidt JD (2004) Jarosite as geochemical indicator of water-limited chemical weathering on Mars. Nature 431:821–823

    Article  ADS  Google Scholar 

  • Fernandez-Remolar DC, Morris R, Gruener JE, Amils R, Knoll AH (2005) The Rio Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240:149–167

    Article  ADS  Google Scholar 

  • Garcia-Veigas J, Chong G, Pueyo JJ (1996) Mineralogy and geochemistry of the Salar Grande salt rock (I Región de Tarapacá, Chile). Genetic implications. ISAG 96: symposium international sur la Géodinamique Andine, 3, Saint-Malo, ORSTOM, 1996, pp 679–682

    Google Scholar 

  • Gendrin A, Mangold N, Bibring J-P, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouélic S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307:1587–1591

    Article  ADS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond Biol 359:1249–1267

    Article  Google Scholar 

  • Grishin SI, Bigham JM, Tuovinen OH (1988) Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Appl Environ Microbiol 54:3101–3106

    Google Scholar 

  • Hynek BM, Phillips RJ (2003) New data reveal mature, integrated drainage systems on Mars indicative of past precipitation. Geology 31:757–760

    Article  ADS  Google Scholar 

  • Kendall AC (1992) Evaporites. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, St John, pp 375–409

    Google Scholar 

  • Klingelhoefer G, Morris RV, Bernhardt B, Schroeder C, Rodionov DS, de Souza PA Jr, Yen A, Gellert R, Evlanov EN, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gutlich P, Ming DW, Renz F, Wdowiak T, Squyres SW, Arvidson RE (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306:1740–1745

    Article  ADS  Google Scholar 

  • Konhauser K (2007) Introduction to geomicrobiology. Blackwell Science, Oxford, 425 p

    Google Scholar 

  • Kounaves SP, Hecht MH, Kapit J, Quinn RC, Catling DC, Clark BC, Ming DW, Gospodinova K, Hredzak P, McElhoney K, Shusterman J (2010) Soluble sulfate in the Martian soil at the Phoenix landing site. J Geophys Res 37:L09201

    Google Scholar 

  • Krumbein WE, Gorbushina AA, Holtkamp-Tacken E (2004) Hypersaline microbial systems of Sabkhas: examples of life’s survival in “extreme” conditions. Astrobiology 4:450–459

    Article  ADS  Google Scholar 

  • Langevin Y, Poulet F, Bibring J-P, Gondet B (2005) Sulfates in the North Polar region of Mars detected by OMEGA/Mars express. Science 307:1584–1586

    Article  ADS  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP, Brock T (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin Cummings, San Francisco, 596 p

    Google Scholar 

  • Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335

    Article  ADS  Google Scholar 

  • Martinez-Frias J, Amaral G, Vázquez L (2006) Astrobiological significance of minerals on Mars surface environment. Rev Environ Sci Biotechnol 5:219–231

    Article  Google Scholar 

  • Maturrano L, Santos F, Rossello-Mora R, Anton J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  Google Scholar 

  • McKay CP (2010) An origin of life on Mars. Cold Spring Harb Perspect Biol 2:a003509

    Article  MathSciNet  Google Scholar 

  • Murchie SL, Mustard JF, Ehlmann BL, Ralph E, Milliken RE, Bishop JL, McKeown NK, Noe Dobrea EZ, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE, Wray JJ, Swayze G, Clark RN, Des Marais DJ, McEwen AS, Bibring J-P (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars reconnaissance orbiter. J Geophys Res 114:E00D06. doi:10.1029/2009JE003342

    Article  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4. doi:10.1186/1746-1448-4-2

  • Oren A, Kuhl M, Karsten U (1995) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments and light penetration. Mar Ecol Progr Ser 128:151–159

    Article  Google Scholar 

  • Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, Palinska KA (2010) Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8:100–111

    Article  Google Scholar 

  • Park JS, Vreeland RH, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD (2009) Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology 7:515–523

    Article  Google Scholar 

  • Pueyo JJ, Chong G, Jensen A (2001) Neogene evaporites in desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48:1411–1431

    Article  ADS  Google Scholar 

  • Rothschild LJ (1990) Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88:246–260

    Article  ADS  Google Scholar 

  • Rothschild LJ, Giver LJ, White MR, Mancinelli RL (1994) Metabolic activity of microorganisms in evaporites. J Phycol 30:431–438

    Article  Google Scholar 

  • Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD, Powers DW (2005) New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33:265–268

    Article  ADS  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482

    Article  ADS  Google Scholar 

  • Soppa J (2006) From genomes to function: haloarchaea as model organisms. Microbiology 152:585–590

    Article  Google Scholar 

  • Squyres SW, Kasting JF (1994) Early Mars: how warm and how wet? Science 265:744–749

    Article  ADS  Google Scholar 

  • Squyres SW, Knoll AH (2005) Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240:1–10

    Article  ADS  Google Scholar 

  • Squyres SW, Arvidson RE, Bell JF III, Brückner J, Cabrol NA, Calvin W, Carr MH, Christensen PR, Clark BC, Crumpler L, Des Marais DJ, d’Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Haskin L, Herkenhoff KE, Hviid S, Johnson J, Klingelhöfer G, Knoll AH, Landis G, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW Jr, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom LA, Sullivan R, Wänke H, Wdowiak T, Wolff M, Yen A (2004) The Opportunity Rover’s Athena science investigation at Meridiani Planum, Mars. Science 306:1698–1701

    Article  ADS  Google Scholar 

  • Stivaletta N, Barbieri R (2008) Endoliths in terrestrial arid environments: implications for astrobiology. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Dordrecht, pp 319–333

    Chapter  Google Scholar 

  • Stivaletta N, Barbieri R (2009) Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J Arid Environ 73:33–39

    Article  Google Scholar 

  • Stivaletta N, Barbieri R, Picard C, Bosco M (2009) Astrobiological significance of the sabkha life and environments of southern Tunisia. Planet Space Sci 57:597–605

    Article  ADS  Google Scholar 

  • Stivaletta N, López-García P, Boihem L, Millie DF, Barbieri R (2010) Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). Geomicrobiol J 27:101–110

    Article  Google Scholar 

  • Stivaletta N, Barbieri R, López-García P, Cevenini F (2011) Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol J 28:83–95

    Article  Google Scholar 

  • Stoertz GE, Ericksen GE (1974) Geology of salars in Northern Chile. US Geological Survey Professional Paper, 811, p 65

    Google Scholar 

  • Taher AG (1999) Inland saline lakes of Wadi El Natrun depression. Egypt Int J Salt Lake Res 8:149–169

    Google Scholar 

  • van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003) Sulfate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79

    Article  Google Scholar 

  • Vaniman DT, Bish DL, Chimera SJ, Fialips CI, Carey JW, Feldman WC (2004) Magnesium sulfate salts and the history of water on Mars. Nature 431:663–665

    Article  ADS  Google Scholar 

  • Vitek P, Osterrothová K, Jehlička J (2009) Beta-carotene – a possible biomarker in the Martian evaporitic environment: Raman micro spectroscopic study. Planet Space Sci 57:454–459

    Article  ADS  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Lowenstein T, Satterfield C, Ventosa A (2006) Fatty acid and DNA analyses of Permian bacteria isolated from ancient salt crystals reveal differences with their modern relatives. Extremophiles 110:71–78

    Article  Google Scholar 

  • Wang A, Zheng MP (2009) Evaporative salts from saline lakes on Tibet Plateau: an analog for salts on Mars. 40th lunar and planetary science conference, #1858

    Google Scholar 

  • Warren JK (2006) Evaporites. Sediments, resources and hydrocarbons. Springer, Berlin/Heidelberg, 1036 p

    Book  Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1194

    Article  ADS  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422

    Article  ADS  Google Scholar 

  • Wright DT, Wacey D (2005) Precipitation of dolomite using sulfate reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52:987–1008

    Article  ADS  Google Scholar 

  • Zheng MP, Wang A, Kong FJ, Ma NN (2009) Saline lakes on Qinghai-Tibet Plateau and salts on Mars. 40th lunar planetary science conference, # 1454

    Google Scholar 

Download references

5. Acknowledgments

This work was financially supported by the MIUR-PRIN (2006) program “Geomicrobiology of continental evaporite deposits: comparative analysis of fossil and modern settings and relevance to astrobiology” and Progetto Strategico Atacama of the University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Barbieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbieri, R., Stivaletta, N. (2012). Halophiles, Continental Evaporites and the Search for Biosignatures in Environmental Analogues for Mars. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_3

Download citation

Publish with us

Policies and ethics