Skip to main content

Endoliths in Terrestrial Arid Environments: Implications for Astrobiology

  • Chapter
From Fossils to Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 12))

Abstract

Microbial life in hot and cold desert environments inhabits endolithic niches. The endolithic microorganisms include bacteria, fungi and lichens. To protect themselves from the inhospitable conditions, such as high UV radiation, dryness, and rapid temperature variations, microorganisms migrate into fractures or in pore spaces where the necessary nutrient, moisture, and light are sufficient for survival. Examples of endolithic communities are well documented from the Negev Desert, Antarctica and the Artic regions, and the Atacama Desert. The most common substrates are porous, crystalline sandstones with calcium carbonate cements and sulfate (gypsum) and other evaporite mineral crusts. The detection of sulfate on the Martian surface has sparked off considerable interest in the astrobiological potential of the evaporite deposits of continental environments, which may potentially host (or may have hosted) endolithic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ascaso, C. and Wierzchos, J. (2002) New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Int. Microbiol. 5, 215–222.

    Article  Google Scholar 

  • Ascaso, C. and Wierzchos, J. (2003) The search for biomarkers and microbial fossils in Antarctic rocks microhabitats. Geomicrobiol. J. 20, 439–450.

    Article  Google Scholar 

  • Banerjee, M., Whitton, B.A. and Wynn Williams, D.D. (2000) Phosphatase activities of endolithic communities on rocks of the Antarctic Dry Valleys. Microb. Ecol. 39, 89–91.

    Article  Google Scholar 

  • Barbieri, R., Stivaletta, N., Marinangeli, L. and Ori, G.G. (2006) Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet. Space Sci. 54, 726–736.

    Article  ADS  Google Scholar 

  • Bell, R.A. (1993) Cryptoendolithic algae of hot semie lands and deserts. J. Phycol. 29, 133–139.

    Article  Google Scholar 

  • Bell, R.A., Athey, P.V. and Sommerfield, M.R. (1983) Preliminary observations on an endolithic alga of northwestern Arizona. J. Phycol. (Suppl.) 19, 7.

    Google Scholar 

  • Bell, R.A., Athey P.V. and Sommerfield, M.R. (1986) Cryptoendolithic algal communities of the Colorado Plateau. J. Phycol. 22, 429–435.

    Article  Google Scholar 

  • Bridges, J.C. and Grady, M.M. (2000) Evaporite mineral assemblages in the nakhlite (Martian) meteorites. Earth Planet. Sci. Lett. 176, 267–279.

    Article  ADS  Google Scholar 

  • Campbell, S.E. (1982) Precambrian endoliths discovered. Nature 299, 429–431.

    Article  ADS  Google Scholar 

  • Cockell, C.S. (2000) The ultraviolet history of the terrestrial planet-implications for biological evolution. Planet. Space Sci. 48, 203–214.

    Article  ADS  Google Scholar 

  • Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. and Ponce, A. (2007) Bacterial diversity in hyperarid Atacama Desert soils. J. Geophys. Res. 112, G04S17.

    Article  Google Scholar 

  • Cowan, D.A. and Ah Tow, L. (2004) Endangerd Antarctic environments. Annu. Rev. Microbiol. 58, 649–690.

    Article  Google Scholar 

  • Critchley, A.T., Wood, J., Horiguchi, T. and Bruton, A.G. (1987) An ultrastructural insight into a cryptoendolithic community. Proc. Electr. Microsc. Soc. S. Afr. 17, 101–102.

    Google Scholar 

  • de la Torre, J.R., Goebel, B.M., Friedmann, I., Pace, N.R. (2003) Microbial diversity of cryptoendolithic communities from Mc Murdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69, 3858–3867.

    Article  Google Scholar 

  • Pade los Rios, A., Wierzchos, J., Sancho, L.G., Ascaso, C. (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ. Microb. 5, 231–237.

    Article  Google Scholar 

  • de los Rios, A., Wierzchos, J., Sancho, L.G., Ascaso, C. (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol. Ecol. 50, 143–152.

    Article  Google Scholar 

  • Dong, H., Rech, J.A., Jiang, H., Sun, H. and Buck, B.J. (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J. Geophys. Res. 112, G02030.

    Article  Google Scholar 

  • Dose, K., Bieger-Dose, A., Birgit, E., Feister, U., Gomez-Silva, B., Klein, A., Risi, S. and Stride, C. (2001) Survival of microorganisms under the extreme conditions of the Atacama Desert. Origins Life Evol. B., Springer Netherlands Publisher, 31, 287–303.

    Article  ADS  Google Scholar 

  • Douglas, S. and Yang, H. (2002) Microbial signatures in evaporites: presence of rosickyte in an endoevaporitic microbial community from Death Valley. California. Geology 30, 1075–1078.

    Google Scholar 

  • Drees, K.P., Neilson, J.W, Betancourt, J.L., Quade, J., Henderson, D.A., Pryor, B.M., Maier, R.M. (2006) Bacterial Community Structure in the Hyperarid Core of the Atacama Desert, Chile. Appl. Environ. Microbiol. 72, 7902–7908.

    Article  Google Scholar 

  • Friedmann, E.I. (1971) Light and scanning electron microscopy of endolithic desert algal habitat. Phycologia 10, 411–428.

    Article  Google Scholar 

  • Friedmann, E.I. (1972) Ecology of lithophytic algal habitats in Middle Eastern and North America Desert. In: L.E. Rodin (ed.) Ecophysiological Foundation of Ecosystems Productivity in Arid Zone. U.S.S.R. Academy of Science, Nauka, Leningrad, pp 182–185.

    Google Scholar 

  • Friedmann, E.I. (1980) Endolithic microbial life in hot and cold deserts. Origins Life 10, 223–235.

    Article  ADS  Google Scholar 

  • Friedmann, E.I. (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053.

    Article  ADS  Google Scholar 

  • Friedmann, E.I. and Galun, M. (1974) Desert algae, lichens, and fungi. In: G.W Brown (ed.) Desert Biology, Vol II. Academic, New York, pp 165–203.

    Google Scholar 

  • Friedmann, E.I. and Koriem, A.M. (1989) Life on Mars: how it disappeared (if it was ever there). Adv. Space Res. 9, 167–172.

    Article  ADS  Google Scholar 

  • Friedmann, E.I. and Ocampo, R. (1976) Endolithic blue-green algae in the dry Valley: primary producers in the Antarctic desert ecosystem. Science 193, 1247–1249.

    Article  ADS  Google Scholar 

  • Friedmann, E.I. and Ocampo-Friedmann, R. (1984) Endolithic microorganisms in extreme dry environments: analysis of lithobiontic microbial habitat. In: M.J. Klug and LA. Reddy (eds.) Current Perspectivies in Microbial Ecology. American Society for Microbiology, Washington, DC, pp 177–185.

    Google Scholar 

  • Friedmann, I.E. and Ocampo-Friedmann, R. (1995) A primitive cyanobacterium as pioneer microorganism for Terraforming Mars. Adv. Space Res. 15, 243–246.

    Article  Google Scholar 

  • Friedmann, E.I. and Weed, R. (1987) Microbial trace-fossil formation, biogenous, and abiotic weat-hering in the Antarctic cold desert. Science 236, 703–705.

    Article  ADS  Google Scholar 

  • Friedmann, E.I., Lipkin, Y. and Ocampo-Paus, R. (1967) Desert algae of the Negev (Israel). Phycologia 6, 185–200.

    Article  Google Scholar 

  • Friedmann, E.I., Mckay, C.P. and Niewon, J.A. (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: continuous nanoclimate data, 1984–1986. Polar Biol. 7, 273–287.

    Article  Google Scholar 

  • Friedmann, E.I., Hua, M. and Ocampo-Friedmann, R. (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58, 251–259.

    Google Scholar 

  • Gendrin, A., Mangold, N., Bibring, J.-R, Langevin, Y., Gondet, B., Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R. and LeMouelic, S. (2005) Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591.

    Article  ADS  Google Scholar 

  • Gerdes, G., Krumbrein, W.E. and Noffke, N. (2000) Evaporite microbial sediment. In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Berlin/Heidelberg, Springer, pp 196–207.

    Google Scholar 

  • Golubic, S., Friedmann, I. and Schneider, J. (1981) The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Petrol. 51, 0475–0478.

    Google Scholar 

  • Gooding, J.L. (1992) Soil mineralogy and chemistry on Mars: possible clues from salt and clays in SNC meteorites. Icarus 99, 28–41.

    Article  ADS  Google Scholar 

  • Grant, W.D., Gemmell, R.T. and Mcgenity, T.J. (1998) Halophiles. In: K. Horikoshi and W.D. Grant (eds.) Extremophiles: Microbial Life in Extreme Environments. Wiley Series in Ecological and Applied Microbiology, Wiley-Liss, New York, pp 93–132.

    Google Scholar 

  • Hirsch, P., Hoffmann, B., Gallikowsky, C.C., Mevs, U., Siebert, J. and Sittig, M. (1988) Diversity and identification of heterotrophs from Antarctic rocks of the McMurdo Dry Valleys (Ross Desert). Polarforschung 58, 261–269.

    Google Scholar 

  • Horowitz, N.H., Cameron, R.E. and Hubbard, J.S. (1972) Microbiology of the Dry Valleys of Antarctica. Antarctic. Sci. 176, 242–245.

    Google Scholar 

  • Hughes, K.A. and Lawley, B. (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ. Microbiol. 5, 555–565.

    Article  Google Scholar 

  • Ionescu, D., Lipski, A., Altendorf, K. and Oren, A. (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576, 15–26.

    Article  Google Scholar 

  • Kminek, G., Bada, J.L., Pogliano, K. and Ward, J.F. (2003) Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat. Res. 159, 722–729.

    Article  Google Scholar 

  • Knoll, A.H., Golubic, S., Grenn, J. and Sweet, K. (1986) Organically preserved microbial endoliths from the Late Proterozoic of East Greenland. Nature 321, 856–857.

    Article  ADS  Google Scholar 

  • Krumbein, W.E., Gorbushina, A.A. and Holtkamp-Tacken, E. (2004) Hypersaline microbial systems of sabkhas: examples of life’s survival in “extreme” conditions. Astrobiology 4, 450–459.

    Article  ADS  Google Scholar 

  • Lange, O.L., Kilian, E. and Ziegler, H. (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71, 104–110.

    Article  Google Scholar 

  • Langevin, Y., Poulet, F., Bibring, J.-P. and Gondet, B. (2005) Sulfates in the North Polar region of Mars detected by OMEGA/Mars Express. Science 307, 1584–1586.

    Article  ADS  Google Scholar 

  • Madigan, M.T., Martinko, J.M. and Parker, J. (2003) Brock Biology of Microorganisms. Prentice-Hall, Upper Saddle River, NJ (tenth edition).

    Google Scholar 

  • Maier, R.M., Drees, K.P., Neilson, J.W., Henderson, D.A., Quade, J. and Betancourt, J.L. (2004) Microbial life in Atacama Desert. Science 306, 1289–1290.

    Article  Google Scholar 

  • McKay, C.P., Friedmann, E.I., Warthon, R.A. and Davies, W.L. (1992) History of water on Mars: a biological perspective. Adv. Space Res. 12, 231–238.

    Article  ADS  Google Scholar 

  • McKay, C.P., Friedmann, E.I., Gomez-Silva, B., Caceres Villanueva, L., Andersen Dale, T. and Landheim, R. (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology 3, 393–406.

    Article  ADS  Google Scholar 

  • McLennan, S.M., Bell, J.F. III, Calvin, W.M., et al. (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani planum, Mars. Earth Planet. Sci. Lett 240, 95–121.

    Article  ADS  Google Scholar 

  • Navarro-Gonzãles, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., de la Rosa, J., Small, A.M., Quinn, R.C., Grunthaner, F.J., Caceres, L., Gomez-Silva, B. and McKay, C.P. (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302, 1018–1021.

    Article  ADS  Google Scholar 

  • Nienow, J.A., McKay C.P. and Friedamnn, E.I. (1988a) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime. Microb. Ecol. 16, 253–270.

    Article  Google Scholar 

  • Nienow, J.A., McKay, C.P. and Friedamnn, E.I. (1988b) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb. Ecol. 16, 271–289.

    Article  Google Scholar 

  • Omelon, C.R., Pollard, W.H. and Ferris, F.G. (2006a) Chemical and ultrastructural characterization of high Artic cryptoendolithic habitats. Geomicrobiol. J. 23, 189–200.

    Article  Google Scholar 

  • Omelon, C.R., Wayne, H.P. and Ferris, F.G. (2006b) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol. 30, 19–29.

    Article  Google Scholar 

  • Onofri, S., Selbmann, L., Zucconi, L. and Pagano, S. (2004) Antarctic microfungi as models for exobiology. Planet. Space Sci. 52, 229–237.

    Article  ADS  Google Scholar 

  • Oren, A., Kuhl, M. and Karsten, U. (1995) An endevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128, 151–159.

    Article  Google Scholar 

  • Palmer, R.J. and Friedmann, E.I. (1990) Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Micro. Ecol. 19, 111–118.

    Article  Google Scholar 

  • Pointing, S.B., Kimberley, A.W., Lacap, D.C., Rhodes, K.L. and McKay, C.P. (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Env. Microbiol. 9, 414–424.

    Article  Google Scholar 

  • Potts, M. (1994) Dessication tolerance of prokaryotes. Microbiol. Rev. 58, 755–805.

    Google Scholar 

  • Potts, M. and Friedmann, E.I. (1981) Effects of water stress on Cryptoendolihic cyanobacteria from hot desert rocks. Arch. Microbiol. 130, 267–271.

    Article  Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F. and Ramos-Cormenzana, A. (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 7, 235–243.

    Article  Google Scholar 

  • Satterfield, C.L., Lowenstein, T.K., Vreeland, R.H., Rosenzweig, W.D. and Powers, D.W. (2005) New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33, 265–268.

    Article  ADS  Google Scholar 

  • Sawyer, D.J., McGehee, M.D., Canepa, J. and Moore, C.B. (2000) Water soluble ions in the Nakhla Martian meteorites. Meteoritics & Planet. Sci 35, 743–747.

    Article  ADS  Google Scholar 

  • Siebert, J. and Hirsch, P. (1988) Characterization of 15 selected coccal bacteria isolated from Antarctica rock and soil samples from the McMurdo-Dry Valleys (South Victoria Land). Polar Biol. 9, 37–44.

    Article  Google Scholar 

  • Siebert, J., Hirsch, P., Hoffmann, B., Gliesche, C.G., Peissl, K. and Jendrach, M. (1996) Biodivers. Conserv. 5, 1337–1363.

    Google Scholar 

  • Squyres, S.W., Arvidson, R.E., Bell, J.F. III, et al. (2004) The Spirit Rover’s Athena Science Investigation at Gusev crater, Mars. Science 35, 794–799.

    Article  ADS  Google Scholar 

  • Sun, H.J. and Friedmann, E.I. (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol. J. 16, 193–202.

    Article  Google Scholar 

  • Treiman, A.H., Gleason, J.D. and Bogard, D.D. (2000) The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230.

    Article  ADS  Google Scholar 

  • Vaniman, D.T., Bish, D.L., Chipera, S.J., Fialips, C.I., Carey, J.W. and Feldman, W.C. (2004) Magnesium sulphate salts and the history of water on Mars. Nature 431, 663–665.

    Article  ADS  Google Scholar 

  • Vestal, J.R. (1988) Carbon metabolism in the cryptoendolithic microbiota in the Antarctic desert. Appl. Environm. Microbiol. 54, 960–965.

    Google Scholar 

  • Villar, S.E.J., Edwards, H.G.M. and Cockell, C.S. (2005) Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130, 156–162.

    Article  ADS  Google Scholar 

  • Vreeland, R.H., Rosenzweig, W.D. and Powers, D.W. (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897–900.

    Article  ADS  Google Scholar 

  • Walker, J. and Pace, N.R. (2007) Endolithic microbial ecosystems. Annu. Rev. Microbiol. 61, 331–347.

    Article  Google Scholar 

  • Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S., Lacap, D.C., Gomez-Silva, B., Amundson, R., Friedmann, E.I. and McKay, C.P. (2006) Hypolithic cyanobacteria, dry limit of photosynthesis and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol 52, 389–398.

    Article  Google Scholar 

  • Wierzchos, J. and Ascaso, C. (2001) Life, decay and fossilzation of endolithic microorganisms from the Ross Desert, Antartctica. Polar Biol. 24, 863–86

    Article  Google Scholar 

  • Wierzchos, J. and Ascaso, C. (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int. J. Astrobiology 1, 51–59.

    Article  ADS  Google Scholar 

  • Wierzchos, J., Ascaso, C., Rancho, L.G. and Green, A. (2003) Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks. Geomicrobiol. J. 20, 15–24.

    Article  Google Scholar 

  • Wierzchos, J., De Los Rios, A., Sancho, L.G., Ascaso, C. (2004) Viability of endolithic microorganisms in rocks from McMurdo Dry Valley of Antarctica established by confocal and fluorescence microscopy. J. Microscopy 216, 57–61.

    Article  Google Scholar 

  • Wierzchos, J., Sancho, L.G. and Ascaso, C. (2005) Biomineralization of endolithic microbes in rocks from the Mcmurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environm. Microbiol. 7, 566–575.

    Article  Google Scholar 

  • Wierzchos, J., Ascaso, C. and McKay, C.P. (2006) Endolithic Cyanobacteria in Halite Rocks from the Hyperarid Core of the Atacama Desert. Astrobiology 6, 415–422.

    Article  ADS  Google Scholar 

  • Wynn-Williams, D.D. and Edwards, H.G.M. (2000) Antarctic ecosystems as model for extraterrestrial surface habitats. Planet. Space Sci. 48, 1065–1075.

    Article  ADS  Google Scholar 

  • Wynn-Williams, D.D., Edwards, H.G.M., Newton, E.M. and Holder J.M. (2002) Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surface. Int. J. Astrobiology 1, 39–49.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nunzia Stivaletta or Roberto Barbieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Stivaletta, N., Barbieri, R. (2009). Endoliths in Terrestrial Arid Environments: Implications for Astrobiology. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_15

Download citation

Publish with us

Policies and ethics