Skip to main content

The Search for Life on Mars

  • Chapter
  • First Online:
Astrobiology

Abstract

Though Mars is a cold and dry planet now, Mars would have harbored a large amount of liquid water on the surface early in its history. Mars could have been similar to the early Earth from which life arose 4 billion years ago, and life may have also emerged on Mars during this period. Although the Viking mission in 1976, which explored life on Mars, did not find evidence for life, many findings associated with the possibility of life have been discovered since the Viking mission: past and present aqueous environments, organic compounds, methane, reduced compounds suitable for microorganism energy sources, and so on. These findings suggest that life might exist on Mars. Habitable environments may be deep subsurface, but it may also be on or near the surface where physical and chemical conditions on which even terrestrial microorganisms to survive are found. Life detection instruments have been developed since the Viking mission. Traces or existence of Martian life might be found by future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey WJ, Bhartia R, Beegle LW, DeFlores L, Paez V, Sijapati K, Sijapati S, Williford K, Tuite M, Hug W (2017) Deep UV Raman spectroscopy for planetary exploration: the search for in situ organics. Icarus 290:201–214

    Article  CAS  Google Scholar 

  • Atreya SK, Mahaffy PR, Wong A-S (2007) Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet Space Sci 55(3):358–369

    Article  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187

    Article  CAS  Google Scholar 

  • Beegle L, Bhartia R, White M, DeFlores L, Abbey W, Wu Y-H, Cameron B, Moore J, Fries M, Burton A (2015) SHERLOC: scanning habitable environments with Raman & luminescence for organics & chemicals. In Aerospace Conference, 2015 IEEE, pp 1–11

    Google Scholar 

  • Benner SA, Devine KG, Matveeva LN, Powell DH (2000) The missing organic molecules on Mars. Proc Natl Acad Sci U S A 97(6):2425–2430

    Article  CAS  Google Scholar 

  • Biemann K, Oro J, Toulmin PIII, Orgel LE, Nier AO, Anderson DM, Simmonds PG, Flory D, Diaz AV, Rushneck DR, Biller JE, Lafleur AL (1977) The search for organic substances and inorganic volatile compounds in the surface of Mars. J Geophys Res 82(28):4641–4658. https://doi.org/10.1029/JS082i028p04641

    Article  CAS  Google Scholar 

  • Catling D, Claire M, Zahnle K, Quinn R, Clark B, Hecht M, Kounaves S (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res: Planets 115(E1):E00E11

    Google Scholar 

  • Chapelle FH, O’neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415(6869):312–315

    Article  Google Scholar 

  • Clifford SM, Lasue J, Heggy E, Boisson J, McGovern P, Max MD (2010) Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J Geophys Res: Planets 115(E7):E07001

    Article  Google Scholar 

  • Cockell CS (2014) Trajectories of Martian habitability. Astrobiology 14(2):182–203

    Article  Google Scholar 

  • Cockell C, Bush T, Bryce C, Direito S, Fox-Powell M, Harrison J, Lammer H, Landenmark H, Martin-Torres J, Nicholson N (2016) Habitability: a review. Astrobiology 16(1):89–117

    Article  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3(11):882–892

    Article  CAS  Google Scholar 

  • Dartnell LR, Desorgher L, Ward J, Coates A (2007) Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys Res Lett 34(2):L02207

    Article  Google Scholar 

  • Dundas CM, McEwen AS, Chojnacki M, Milazzo MP, Byrne S, McElwaine JN, Urso A (2017) Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nat Geosci 10(12):903–907

    Article  CAS  Google Scholar 

  • Edwards CS, Piqueux S (2016) The water content of recurring slope lineae on Mars. Geophys Res Lett 43(17):8912–8919

    Article  Google Scholar 

  • Eigenbrode JL, Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B, McAdam AC, Franz HB, Glavin DP, Archer PD, Mahaffy PR, Conrad PG, Hurowitz JA, Grotzinger JP, Gupta S, Ming DW, Sumner DY, Szopa C, Malespin C, Buch A, Coll P (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater. Mar Sci 360(6393):1096–1101

    CAS  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51(2):276–299

    Article  Google Scholar 

  • Etiope G, Oehler D, Allen C (2011) Methane emissions from Earth’s degassing: implications for Mars. Planet Space Sci 59(2):182–195

    Article  CAS  Google Scholar 

  • Feldman WC, Boynton WV, Tokar RL, Prettyman TH, Gasnault O, Squyres SW, Elphic RC, Lawrence DJ, Lawson SL, Maurice S, McKinney GW, Moore KR, Reedy RC (2002) Global distribution of neutrons from Mars: results from Mars odyssey. Science 297(5578):75–78

    Article  CAS  Google Scholar 

  • Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306(5702):1758–1761. https://doi.org/10.1126/science.1101732

    Article  CAS  PubMed  Google Scholar 

  • Freissinet C, Glavin DP, Mahaffy PR, Miller KE, Eigenbrode JL, Summons RE, Brunner AE, Buch A, Szopa C, Archer PD, Franz HB, Atreya SK, Brinckerhoff WB, Cabane M, Coll P, Conrad PG, Marais DJD, Dworkin JP, Fairén AG, François P, Grotzinger JP, Kashyap S, ILt K, Leshin LA, Malespin CA, Martin MG, Martin-Torres FJ, McAdam AC, Ming DW, Navarro-González R, Pavlov AA, Prats BD, Squyres SW, Steele A, Stern JC, Sumner DY, Sutter B, Zorzano MP (2015) Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J Geophys Res: Planets 120(3):495–514. https://doi.org/10.1002/2014JE004737

    Article  CAS  Google Scholar 

  • Geminale A, Formisano V, Sindoni G (2011) Mapping methane in Martian atmosphere with PFS-MEX data. Planet Space Sci 59(2):137–148

    Article  CAS  Google Scholar 

  • Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouelic S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307(5715):1587–1591

    Article  CAS  Google Scholar 

  • Glavin DP, Schubert M, Botta O, Kminek G, Bada JL (2001) Detecting pyrolysis products from bacteria on Mars. Earth Planet Sci Lett 185(1–2):1–5

    Article  CAS  Google Scholar 

  • Grant W (2004) Life at low water activity. Philos Trans R Soc Lond B: Biol Sci 359(1448):1249–1267

    Article  CAS  Google Scholar 

  • Grotzinger JP, Sumner DY, Kah L, Stack K, Gupta S, Edgar L, Rubin D, Lewis K, Schieber J, Mangold N (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater. Mar Sci 343(6169):1242777

    CAS  Google Scholar 

  • Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL, Brinza DE, Weigle G, Böttcher S, Böhm E (2013) Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343:1244797

    Article  Google Scholar 

  • Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, Deflores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325(5936):64–67. https://doi.org/10.1126/science.1172466

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Vigano I, McLeod A, Ott U, Früchtl M, Röckmann T (2012) Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486(7401):93

    Article  CAS  Google Scholar 

  • Kereszturi A, Bradák B, Chatzitheodoridis E, Ujvari G (2016) Indicators and methods to understand past environments from ExoMars rover drills. Orig Life Evol Biospheres 46(4):435–454

    Article  CAS  Google Scholar 

  • Klein HP (1977) The Viking biological investigation: general aspects. J Geophys Res 82(28):4677–4680

    Article  CAS  Google Scholar 

  • Klein HP (1978) The Viking biological experiments on Mars. Icarus 34(3):666–674

    Article  CAS  Google Scholar 

  • Klein HP (1979) The Viking mission and the search for life on Mars. Rev Geophys 17(7):1655–1662

    Article  Google Scholar 

  • Klein HP (1992) The Viking biology experiments: epilogue and prologue. Orig Life Evol Biospheres 21(4):255–261

    Article  CAS  Google Scholar 

  • Klein HP (1998) The search for life on Mars: what we learned from Viking. J Geophys Res 103(E12):28463–28466. https://doi.org/10.1029/98je01722

    Article  Google Scholar 

  • Klein HP (1999) Did Viking discover life on Mars? Orig Life Evol Biospheres 29(6):625–631

    Article  CAS  Google Scholar 

  • Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245(1–2):1–5

    Article  CAS  Google Scholar 

  • Kminek G, Rummel J (2015) COSPAR’s planetary protection policy. Space Res Today 193:7–18

    Article  Google Scholar 

  • Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, Ming DW, Smith PH, Tamppari LK (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44(7):2360–2364

    Article  CAS  Google Scholar 

  • Krasnopolsky VA (2006) Some problems related to the origin of methane on Mars. Icarus 180(2):359–367

    Article  CAS  Google Scholar 

  • Krasnopolsky VA, Feldman PD (2001) Detection of molecular hydrogen in the atmosphere of Mars. Science 294(5548):1914–1917

    Article  CAS  Google Scholar 

  • Krasnopolsky V, Bjoraker G, Mumma M, Jennings D (1997) High-resolution spectroscopy of Mars at 3.7 and 8 μm: a sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO. J Geophys Res: Planets 102(E3):6525–6534

    Article  CAS  Google Scholar 

  • Krasnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the Martian atmosphere: evidence for life? Icarus 172(2):537–547

    Article  CAS  Google Scholar 

  • Lasne J, Noblet A, Szopa C, Navarro-González R, Cabane M, Poch O, Stalport F, François P, Atreya SK, Coll P (2016) Oxidants at the surface of Mars: a review in light of recent exploration results. Astrobiology 16(12):977–996

    Article  CAS  Google Scholar 

  • Lasue J, Mangold N, Hauber E, Clifford S, Feldman W, Gasnault O, Grima C, Maurice S, Mousis O (2013) Quantitative assessments of the Martian hydrosphere. Space Sci Rev 174(1–4):155–212

    Article  CAS  Google Scholar 

  • Lefevre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460(7256):720

    Article  CAS  Google Scholar 

  • Levin GV, Straat PA (1977) Recent results from the Viking labeled release experiment on Mars. J Geophys Res 82(28):4663–4667. https://doi.org/10.1029/JS082i028p04663

    Article  CAS  Google Scholar 

  • Malin MC, Carr MH (1999) Groundwater formation of Martian valleys. Nature 397(6720):589–591. https://doi.org/10.1038/17551

    Article  CAS  PubMed  Google Scholar 

  • Malin MC, Edgett KS (2000) Sedimentary rocks of early Mars. Science 290(5498):1927–1937

    Article  CAS  Google Scholar 

  • Mancinelli RL, Klovstad M (2000) Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces. Planet Space Sci 48(11):1093–1097

    Article  Google Scholar 

  • Margulis L, Mazur P, Barghoorn ES, Halvorson HO, Jukes TH, Kaplan IR (1979) The Viking Mission: implications for life on Mars. J Mol Evol 14(1):223–232

    Article  CAS  Google Scholar 

  • Martín-Torres FJ, Zorzano M-P, Valentín-Serrano P, Harri A-M, Genzer M, Kemppinen O, Rivera-Valentin EG, Jun I, Wray J, Madsen MB (2015) Transient liquid water and water activity at Gale crater on Mars. Nat Geosci 8(5):357–361

    Article  Google Scholar 

  • Max MD, Clifford SM (2000) The state, potential distribution, and biological implications of methane in the Martian crust. J Geophys Res: Planets 105(E2):4165–4171

    Article  CAS  Google Scholar 

  • McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L, Wray JJ, Chojnacki M, Byrne S, Murchie SL, Thomas N (2014) Recurring slope lineae in equatorial regions of Mars. Nat Geosci 7(1):53–58

    Article  CAS  Google Scholar 

  • McKay CP, Davis WL (1991) Duration of liquid water habitats on early Mars. Icarus 90(2):214–221

    Article  CAS  Google Scholar 

  • Michalski JR, Cuadros J, Niles PB, Parnell J, Rogers AD, Wright SP (2013) Groundwater activity on Mars and implications for a deep biosphere. Nat Geosci 6(2):133

    Article  CAS  Google Scholar 

  • Ming D, Archer P, Glavin D, Eigenbrode J, Franz H, Sutter B, Brunner A, Stern J, Freissinet C, McAdam A (2014) Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater. Mar Sci 343(6169):1245267

    CAS  Google Scholar 

  • Möhlmann D, Thomsen K (2011) Properties of cryobrines on Mars. Icarus 212(1):123–130

    Article  Google Scholar 

  • Morris R, Ming D, Yen A, Arvidson R, Gruener J, Humm D, Klingelhöfer G, Murchie S, Schröder C, Seelos IV F, Squyres S., Wisema S., Wolff M., the MER and CRISM Science Teams (2007) Possible evidence for iron sulfates, iron sulfides, and elemental sulfur at Gusev Crater, Mars, from MER, CRISM, and analog data. In Seventh International Conference on Mars

    Google Scholar 

  • Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, Disanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323(5917):1041–1045. https://doi.org/10.1126/science.1165243

    Article  CAS  PubMed  Google Scholar 

  • Nadeau JL, Perreault NN, Niederberger TD, Whyte LG, Sun HJ, Leon R (2008) Fluorescence microscopy as a tool for in situ life detection. Astrobiology 8(4):859–874. https://doi.org/10.1089/ast.2007.0043

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez R, Navarro KF, de la Rosa J, Iniguez E, Molina P, Miranda LD, Morales P, Cienfuegos E, Coll P, Raulin F, Amils R, McKay CP (2006) The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc Natl Acad Sci U S A 103(44):16089–16094. https://doi.org/10.1073/pnas.0604210103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson WL, Krivushin K, Gilichinsky D, Schuerger AC (2013) Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc Natl Acad Sci 110(2):666–671. https://doi.org/10.1073/pnas.1209793110

    Article  PubMed  Google Scholar 

  • Oehler DZ, Etiope G (2017) Methane seepage on Mars: where to look and why. Astrobiology 17(12):1233–1264. https://doi.org/10.1089/ast.2017.1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ, Hanley J, Masse M, Chojnacki M (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8:829–832. https://doi.org/10.1038/ngeo2546

    Article  CAS  Google Scholar 

  • Ono M, Rothrock B, Almeida E, Ansar A, Otero R, Huertas A, Heverly M (2016) Data-driven surface traversability analysis for Mars 2020 landing site selection. In: Aerospace Conference, IEEE, pp 1–12

    Google Scholar 

  • Oren A, Bardavid RE, Mana L (2014) Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. Extremophiles 18(1):75–80

    Article  CAS  Google Scholar 

  • Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (2018) Radar evidence of subglacial liquid water on Mars. Science 361:eaar7268

    Article  Google Scholar 

  • Oyama VI, Berdahl BJ (1977) The Viking gas exchange experiment results from Chryse and Utopia surface samples. J Geophys Res 82(28):4669–4676. https://doi.org/10.1029/JS082i028p04669

    Article  CAS  Google Scholar 

  • Oze C, Sharma M (2005) Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys Res Lett 32(10):L10203

    Article  Google Scholar 

  • Rummel J, Conley C (2017) Four fallacies and an oversight: searching for Martian life. Astrobiology 17(10):1–4

    Article  Google Scholar 

  • Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera J-PP, Gough RV (2014) A new analysis of Mars “special regions”: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14(11):887–968

    Article  Google Scholar 

  • Schulte M, Blake D, Hoehler T, McCollom T (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6(2):364–376

    Article  CAS  Google Scholar 

  • Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) H2O at the phoenix landing site. Science 325(5936):58–61. https://doi.org/10.1126/science.1172339

    Article  CAS  PubMed  Google Scholar 

  • Squyres SW, Knoll AH (2005) Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240(1):1–10

    Article  CAS  Google Scholar 

  • Steininger H, Goesmann F, Goetz W (2012) Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils. Planet Space Sci 71(1):9–17

    Article  CAS  Google Scholar 

  • Stern JC, Sutter B, Freissinet C, Navarro-González R, McKay CP, Archer PD, Buch A, Brunner AE, Coll P, Eigenbrode JL (2015) Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc Natl Acad Sci 112(14):4245–4250

    Article  CAS  Google Scholar 

  • Vago JL, Westall F, Coates AJ, Jaumann R, Korablev O, Ciarletti V, Mitrofanov I, Josset J-L, De Sanctis MC, Bibring J-P (2017) Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17(6–7):471–510

    Article  Google Scholar 

  • Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Mischna MA, Meslin P-Y, Farley KA, Conrad PG, Christensen LE, Pavlov AA (2015) Mars methane detection and variability at Gale crater. Science 347(6220):415–417

    Article  CAS  Google Scholar 

  • Webster CR, Mahaffy PR, Atreya SK, Moores JE, Flesch GJ, Malespin C, McKay CP, Martinez G, Smith CL, Martin-Torres J, Gomez-Elvira J, Zorzano M-P, Wong MH, Trainer MG, Steele A, Archer D, Sutter B, Coll PJ, Freissinet C, Meslin P-Y, Gough RV, House CH, Pavlov A, Eigenbrode JL, Glavin DP, Pearson JC, Keymeulen D, Christensen LE, Schwenzer SP, Navarro-Gonzalez R, Pla-García J, Rafkin SCR, Vicente-Retortillo Á, Kahanpää H, Viudez-Moreiras D, Smith MD, Harri A-M, Genzer M, Hassler DM, Lemmon M, Crisp J, Sander SP, Zurek RW, Vasavada AR (2018) Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360(6393):1093–1096

    Article  CAS  Google Scholar 

  • Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago JL, Kminek G, Gaboyer F, Campbell KA, Bréhéret J-G (2015) Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15(11):998–1029

    Article  Google Scholar 

  • Yamagishi A, Yokobori S, Yoshimura Y, Yamashita M, Hashimoto H, Kubota T, Yano H, Haruyama J, Tabata M, Kobayashi K, Honda H, Utsumi Y, Saiki T, Itoh T, Miyakawa A, Hamase K, Naganuma T, Mita H, Tonokura K, Sasaki S, Miyamoto H (2010) Japan Astrobiology Mars Project (JAMP): search for microbes on the Mars surface with special interest in methane-oxidizing bacteria. Biol Sci Space 24(2):67–82

    Article  Google Scholar 

  • Yamagishi A, Satoh T, Miyakawa A, Yoshimura Y, Sasaki S, Kobayashi K, Kebukawa Y, Yabuta H, Mita H, Imai E, Naganuma T, Fujita K, Usui T (2018) LDM (life detection microscope): in situ imaging of living cells on surface of Mars. Transaction of the Japan Society for Aeronautical and Space Sciences. Aerosp Technol Jpn 16(ISTS31):299–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimura, Y. (2019). The Search for Life on Mars. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_23

Download citation

Publish with us

Policies and ethics