Skip to main content
Log in

Astrobiological significance of minerals on Mars surface environment

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Despite the large amount of geomorphological, geodynamic and geophysical data obtained from Mars missions, much is still unknown about Martian mineralogy and paragenetic assemblages, which is fundamental to an understanding of its entire geological history. Minerals are not only indicators of the physical–chemical settings of the different environments and their later changes, but also they could (and do) play a crucial astrobiological role related with the possibility of existence of extinct or extant Martian life. This paper aims: (1) to present a synoptic review of the main water-related Martian minerals (mainly jarosite and other sulfates) discovered up to the present time; (2) to emphasize their significance as environmental geomarkers, on the basis of their geological settings and mineral parageneses on earth (in particular in the context of some selected terrestrial analogues), and (3) to show that their differential UV shielding properties, against the hostile environmental conditions of the Martian surface, are of a great importance for the search for extraterrestrial life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen CC, Jager KM, Morris RV, Lindstrom DJ, Lindstrom MM, Lockwood JP (1998) Martian soil simulant available for scientific, educational study. EOS 79:405

    ADS  Google Scholar 

  • Amar de la Torre R (1852) Descripcion de los minerales, algunos de ellos nuevos, que constituyen el filón del Barranco Jaroso de Sierra Almagrera, por el caballero profesor el doctor Augusto Breithaupt, de Freiberg. Revista Minera 3:745–754

    Google Scholar 

  • Amaral G, Martinez-Frias J, Vázquez L (2005) Paragenetic models and influence of UV radiation on selected water-related minerals under simulated Martian conditions. Preliminary experiments. MSL-REMS First Science Team Meeting, Centro de Astrobiologia, CSIC/INTA, associated to the NASA Astrobiology Institute, Torrejon de Ardoz, Madrid, Spain

  • Amaral Zettler LA, Messerli MA, Laatsch AD, Smith PJS, Sogin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol Bull 204:205–209

    PubMed  CAS  Google Scholar 

  • Aubrey AD, Cleaves HJ, Chalmers JH, Bada JL (2005) Sulfate minerals as targets for biomolecule detection on Mars Goldschmidt Conference Abstracts 2005 The Robotic Exploration of Mars and Titan, A533

  • Aubrey AD, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34:357–360

    Article  CAS  ADS  Google Scholar 

  • Bandfield JL (2002) Global mineral distribution on Mars. J Geophys Res107(E6):5042

    Article  Google Scholar 

  • Bandfield JL, Glotch TD, Christensen PR (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science 301:1084–1087

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bandfield JL, Hamilton VE, Christensen PR, McSween HY Jr (2004) Identification of quartzofeldspathic materials on Mars. J Geophys Res E100:1–14

    Google Scholar 

  • Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, the OMEGA team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312:400–404

    Google Scholar 

  • Bishop JL, Dyar MD, Lane MD, Banfield JF (2005) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. Int J Astrobiol 3:275–285

    Article  CAS  Google Scholar 

  • Boynton WV, Feldman WC, Squyres SW, Prettyman TH, Brückner J, Evans LG, Reedy RC, Starr R, Arnold JR, Drake DM, Englert PAJ, Metzger AE, Mitrofanov I, Trombka JI, d’Uston C, Wänke H, Gasnault O, Hamara DK, Janes DM, Marcialis RL, Maurice S, Mikheeva I, Taylor GJ, Tokar R, Shinohara C (2002) Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297:81–84

    Article  PubMed  CAS  ADS  Google Scholar 

  • Broady PA (1981a) The ecology of hypolithic terrestrial algae at the Vestfold Hills, Antarctica. Br Phycol J 16:231–240

    Google Scholar 

  • Broady PA (1981b) The ecology of chasmoendolithic algae at coastal locations of Antarctica. Phycologia 20:259–272

    Google Scholar 

  • Burns RG (1987) Ferric sulfates on Mars. J Geophys Res 92:570–574

    ADS  Google Scholar 

  • Carr MH, Crumpler LS, Cutts JA, Greeley R, Guest JE, Masursky H (1977) Martian impact craters and emplacement of ejecta by surface flow. J Geophys Res 82:4055–4065

    Article  ADS  Google Scholar 

  • Cess RD, Ramanathan V, Owen T (1980) The martian paleoclimate and enhanced carbon dioxide. Icarus 41:159–165

    Article  CAS  ADS  Google Scholar 

  • Christensen PR, Bandfield JL, Clark RN, Edgett KS, Hamilton VE, Hoefen T, Kieffer HH, Kuzmin RO, Lane MD, Malin MC, Morris RV, Pearl JC, Pearson R, Roush TL, Ruff SW, Smith MD (2000) Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: evidence for near surface water. J Geophys Res 105 (E4):9623–9642

    Google Scholar 

  • Christensen PR, Bandfield JL, Clark RN, Edgett KS, Hamilton VE, Hoefen T, Kieffer HH, Kuzmin RO, Lane MD, Malin MC, Morris RV, Pearl JC, Christensen PR, Morris RV, Lane MD, Bandfield JL, Malin MC (2001) Global mapping of martian hematite deposits: remnants of water-driven processes on early Mars. J Geophys Res 106:23,873–23,886

    CAS  ADS  Google Scholar 

  • Christensen PR, McSween HY Jr, Bandfield JL, Ruff SW, Rogers AD, Hamilton VE, Gorelick N, Wyatt MB, Jakosky BM, Kieffer HH, Malin MC, Moersch JE (2005) Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 504–509

  • Christensen PR, Wyatt MB, Glotch TD, Rogers AD, Arvidson RE, Bandfield JL, Blaney DL, Budney C, Calvin WM, Fergason RL, Graff TG, Hamilton VE, Hayes A, Johnson JR, Knudson AT, McSween HY, Mehall GL, Mehall LK, Moersch JE, Morris RV, Smith MD, Squyres SW, Ruff SW, Wolff MJ (2004) Initial results from the miniature thermal emission spectrometer experiment at the opportunity landing site on meridiani planum, Science 306:1733–1739

    Google Scholar 

  • Clark BC, Morris RV, McLennan SM, Gellert R, Jolliff B, Knoll AH, Squyres SW, Lowenstein TK, Ming DW, Tosca NJ, Yen A, Christensen PR, Gorevan S, Bruckner J, Calvin W, Dreibus G, Farrand W, Klingelhoefer G, Waenke H, Zipfel J, Bell JF III, Grotzinger J, McSween HY, Rieder R (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett 240:73–94

    Article  CAS  ADS  Google Scholar 

  • Cockell CS (1998) The biological effects of high ultraviolet radiation on early Earth—A theoretical evaluation. J Theor Biol 193:717–729

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Catling D, Davis WL, Kepner RN, Lee PC, Snook K, McKay CP (2000) The ultraviolet environment of Mars: biological implications past, present and future. Icarus 146:343–359

    Article  PubMed  CAS  ADS  Google Scholar 

  • Cockell CS, Rettberg P, Horneck G, Scherer K, Stokes MD (2003) Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol 26:62–69

    Google Scholar 

  • Colmer AR, Hinkle ME (1947) The role of microorganisms in acid mine drainage: a preliminary report. Science 106:253–256

    CAS  ADS  PubMed  Google Scholar 

  • Costard F, Forget F, Mangold N, Peulvast JP (2002) Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science 295(5552):110–113

    Article  PubMed  CAS  ADS  Google Scholar 

  • Edwards HGM, Jorge Villar SE, Parnell J, Cockell CS, Lee P (2005) Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130:917–923

    Article  PubMed  CAS  ADS  Google Scholar 

  • Fairen AG, Fernandez-Remolar D, Dohm JM, Baker VR, Amils R (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431(7007):423–426

    Article  PubMed  CAS  ADS  Google Scholar 

  • Fan Ch, Schulze-Makuch D (2005) Columbia Plateau Basalt as an analog to the basalt of the Martian Northern Plains Goldschmidt Conference Abstracts 2005 The Robotic Exploration of Mars and Titan, A534

  • Farmer J (2004) Targeting sites for future astrobiological missions to Mars Second Conference on Early Mars, October 11–15, 2004, Jackson Hole, Wyoming, 8088.pdf

  • Feldman WC, Boynton WV, Tokar RL, Prettyman TH, Gasnault O, Squyres SW, Elphic RC, Lawrence DJ, Lawson SL, Maurice S, McKinney GW, Moore KR, Reedy RC (2002) Global distribution of neutrons from Mars results from Mars Odyssey. Science 297(5578):75–78

    Article  PubMed  CAS  ADS  Google Scholar 

  • Fernandez-Remolar D, Gomez-Elvira J, Gomez F, Sebastian E, Martin J, Manfredi JA, Torres J, Gonzalez Kesler C, Amils R (2004) The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars, Planet. Space Sci 52:239–248

    Article  CAS  ADS  Google Scholar 

  • Fernandez-Remolar DC, Morris R, Gruener JE, Amils R, Knoll AH (2005) The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240:149–167

    Article  CAS  ADS  Google Scholar 

  • Fishbaugh KE, Poulet F, Langevin Y, Chevrier V, Bibring JP (2006) Origin of gypsum in the Mars north polar region. Lunar Planet Sci XXXVII:1642.pdf

  • Friedmann EI (1982) Endolithic microorganisms in the antarctic cold desert. Science 215:1045–1053

    ADS  PubMed  Google Scholar 

  • Friedmann EI, Ocampo R (1976) Cryptoendolithic blue-green algae in the dry valleys: primary producers and the Antarctic desert ecosystem. Science 193:1247–1249

    ADS  PubMed  Google Scholar 

  • Frost RL, Weier ML, Kloprogge JT, Rull F, Martinez-Frias J (2005) Raman spectroscopy of halotrichite from Jaroso, Spain. Spectrochim Acta Part A Mol Biomol Spectrosc 62(1–3):166–180

    Google Scholar 

  • Glotch TD, Christensen PR (2005) Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history. J Geophys Res 110:E09006, doi:10.1029/2004JE002389

  • Gomez F, Grau A, Vazquez L, Amils R (2003) UV radiation effects over microorganisms and study of protective agents. Proc. Of the III European Workshop on Exo-Astrobiology, Mars, The Search for Life, Madrid, Spain, 18–20 November 2003, 21–26

  • Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  CAS  Google Scholar 

  • Hecht MH (2002) Metastability of liquid water on Mars. Icarus 156:373–386

    Article  CAS  ADS  Google Scholar 

  • Huguenin RL (1976) Chemical evolution of the Martian atmosphere by surface weathering. Proc Colloq Water Planet Regoliths V.I:33–43

    ADS  Google Scholar 

  • Huguenin RL, Prinn RG, Maderazzo M (1977) Mars: photodesorption from mineral surfaces and its effects on atmospheric stability. Icarus 32:270–298

    Article  ADS  Google Scholar 

  • Hutchison L, Mustard JF, Gendrin A, Bibring J-P, Langevin Y, Gondet B, Mangold N, the OMEGA Science Team (2005) Mafic polyhydrated sulfates and Kieserite in Capri Chasma. Lunar Planet Sci XXXVI:1404.pdf

  • Ingersoll AP (1970) Mars: occurrence of liquid water. Science 168:972–973

    CAS  ADS  PubMed  Google Scholar 

  • Jerz JK (2002) Geochemical reactions in unsaturated mine, wastes. Thesis/dissertation, Blacksburg, Va, University Libraries, Virginia Polytechnic Institute and State University, OCLC:49698307

  • Klingelhöfer G, Morris RV, Bernhardt B, Schröder C, Rodionov DS Jr, de Souza PA, Yen A, Gellert R, Evlanov EN, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gütlich P, Ming DW, Renz F, Wdowiak T, Squyres SW, Arvidson RE (2004) Jarosite and Hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer. Science 306(5702):1740–1745

    Article  PubMed  ADS  Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400(6745):652–655

    Article  CAS  ADS  Google Scholar 

  • Kumar A, Tyagi MB, Srinivas G, Singh N, Kumar HD, Sinha RP, Haeder DP (1996) UVB shielding and the role of FeCl3 and certain cyanobacterial pigments. Photochem Photobiol 63:321–325

    Google Scholar 

  • Lammer H, Lichtenegger HC, Kolb IM, Ribas I, Guinan EF, Abart R, Bauer SJ (2003) Loss of water from Mars: implications for the oxidation of the soil. Icarus 165:9–25

    Article  CAS  ADS  Google Scholar 

  • Lane MD, Bishop JL, Dyar MD, Cloutis E, Forray FL, Hiroi T (2005) Integrated spectroscopic studies of anhydrous sulfate minerals. Lunar Planet Sci XXXVI:1442.pdf

  • Lane MD, Darby Dyar M, Bishop JL (2004) Spectroscopic evidence for hydrous iron sulfate in the Martian soil. Geophys Res Lett 31:L19702, doi:10.1029/2004GL021231

  • Langevin Y, Poulet F, Bibring JP, Gondet B (2005) Sulfates in the North polar region of Mars detected by OMEGA/Mars express. Science 307(5715):1584–1586

    Article  PubMed  CAS  ADS  Google Scholar 

  • López-Archilla AI, Marín I, Amils R (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb Ecol 41:20–35

    PubMed  Google Scholar 

  • Madden MEE, Bodnar RJ, Rimstidt JD (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431:821–823

    Article  PubMed  ADS  CAS  Google Scholar 

  • Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335

    Article  PubMed  CAS  ADS  Google Scholar 

  • Margulis L, Walker JCG, Rambler M (1976) Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264:620–624

    Article  CAS  Google Scholar 

  • Marion GM, Kargel JS, Catling DC (2006) Modeling ferrous/ferric iron chemistry with application to Martian surface geochemistry. Lunar Planet Sci XXXVII:1898.pdf

  • Martin JM, Braga JC (1994) Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sediment Geol 90:257–268

    Article  ADS  Google Scholar 

  • Martinez-Frias J, García Guinea J, López Ruiz J, Reynolds GA (1992) Discovery of fossil fumaroles in Spain. Econ Geol 87:444–447

    Article  CAS  Google Scholar 

  • Martinez-Frias J (1998) An Ancient Ba-Sb-Ag-Fe-Hg-bearing hydrothermal system in SE Spain. Episodes 21(4):248–252

    Google Scholar 

  • Martinez-Frias J (1999) Mining vs. geological heritage: the Cuevas del Almanzora natural area (SE Spain). AMBIO: J Hum Environ 28(2):204–207

  • Martinez-Frias J, Lunar R, Mangas J, Delgado A, Barragan G, Sanz-Rubio E, Diaz E, Benito R, Boyd T (2001a) Evaporitic and hydrothermal gypsum from SE iberia: geology, geochemistry, and implications for searching for life on Mars, Geological Society of America (GSA) Annual Meeting, Boston, Massachussets, USA

  • Martinez-Frias J, Lunar R, Rodriguez Losada JA (2001b) Hydrothermal mineralization in SE Spain as possible volcanics-related metallogenetic model for the early Mars, 2nd Astrobiology Minisymposium, CAB (CSIC/INTA), associated to NASA Astrobiology Institute, Madrid, Spain

  • Martinez-Frias J, Lunar R, Rodríguez-Losada JA, Delgado A (2004) The volcanism-related multistage hydrothermal system of El Jaroso (SE Spain): implications for the exploration of Mars. Earth Planets Space 56:v–viii

    Google Scholar 

  • McKay CP, Stoker CR (1989) The early environment and it’s evolution on Mars: implications for life. Rev Geophys 27:189–214

    ADS  Google Scholar 

  • McKay CP (1993) Relevance of Antarctic microbial ecosystems to exobiology. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 593–601

    Google Scholar 

  • McSween HY (2004) Mars mineralogy: the view from MER, November 10, 2004. Geological Society of America, Abstracts with Programs 36(5):556

  • Mitrofanov I, Anfimov D, Kozyrev A, Litvak M, Sanin A, Tret’yakov V, Krylov A, Shvetsov V, Boynton W, Shinohara C, Hamara D, Saunders RS (2002) Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297(5578):78–81

    Article  PubMed  CAS  ADS  Google Scholar 

  • Moore JM, Bullock MA (1999) Experimental studies of Mars-analog brines. J Geophys Res 104(E9):21,925–21,934

    Article  CAS  ADS  Google Scholar 

  • Morris RV, Lauer HV Jr (1981) Stability of goethite (a-FeOOH) and lepidocrocite (g-FeOOH) to dehydration by UV radiation: implications for their occurrence on the Martian surface. J Geophys Res 86:10,893–10,899; J Geophys Res 84:8415–8426

    Google Scholar 

  • Murad E, Rojík P (2003) Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5–9 December 2004. University of Sydney, Australia, pp 1–8

    Google Scholar 

  • Noe Dobrea EZ, Bell JF, Wolff MJ, Gordon KD (2003) H2O- and OH-bearing minerals in the Martian regolith: Analysis of 1997 observations from HST/NICMOS. Icarus 163(1):1–20

    Article  ADS  CAS  Google Scholar 

  • O’Connor VA (2005) Comparative crystal chemistry of hydrous iron sulfates from different terrestrial environments, Bachelor of Arts with Honors, Department of Geology, Smith College, p 150

  • Olsen JM, Pierson BK (1986) Photosynthesis 3.5 thousand million years ago. Photosynth Res 9:251–259

    Article  Google Scholar 

  • Orofino V, Blanco A, D’Elia M, De Carlo F, Fonti S, Marra AC, Marzo GA, Politi R, Verrienti C (2005) Spectroscopic studies of materials relevant for the hydrological evolution of Mars. Mem SAIt Suppl Vol 6:76–81

    Google Scholar 

  • Parnell J, Lee P, Cockell CS, Osinski GR (2004) Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int J Astrobiol 3:247

    Article  CAS  Google Scholar 

  • Patel MR, Bérces A, Kolb C, Lammer H, Rettberg P, Zarnecki JC, Selsis F (2003) Seasonal and diurnal variations in Martian surface UV irradiation: biological and chemical implications for the Martian regolith. Int J Astrobiol 2:21–34

    Article  CAS  Google Scholar 

  • Patel MR, Berces A, Kerekgyarto T, Ronto Gy, Lammer H, Zarnecki JC (2004) Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv Space Res 33:1247–1252

    Article  PubMed  CAS  ADS  Google Scholar 

  • Pearson R, Roush TL, Ruff SW, Smith MD (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water. J Geophys Res 105:9623–9642

    Article  ADS  Google Scholar 

  • Phoenix VR, Konhauser KO, Adams DG, Bottrell SH (2001) The role of biomineralization as an ultraviolet shield: implications for the Archean. Geology 29:823–826

    Article  CAS  ADS  Google Scholar 

  • Pierson BK, Mitchell HK, Ruff-Roberts AL (1993) Chloroflexus aurantiacusand ultraviolet radiation: implications for archean shallow-water stromatolites. Origins Life Evol Biosphere 23:243–260

    Article  ADS  Google Scholar 

  • Poulet F, Bibring JP, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidson RE, Gondet B, Gomez C, the Omega Team (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627

  • Quinn RC, Zent AP, Ehrenfruend P, Taylor CL, McKay CP, Garry JRC, Grunthaner FJ (2005) Dry acid deposition and accumulation on the surface of Mars and in Atacama Desert, Chile. Lunar Planet Sci XXXVI:2282.pdf

  • Riding R, Braga JC, Martin HM, Sánchez-Almazo IM (1998) Mediterranean Messinian salinity crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain. Mar Geol 146:1–20

    Article  Google Scholar 

  • Rontó Gy, Berces A, Lammer H, Cockell CS, Molina-Cuberos GC, Patel MR, Selsis F (2003) Solar UV irradiation conditions on the surface of Mars. Photochem Photobiol 77:34–40

    Article  PubMed  Google Scholar 

  • Rull F, Martinez-Frias J, Medina J (2005) Surface mineral analysis from two possible Martian analogs (Rio Tinto and Jaroso Ravine, Spain) using micro-, macro-, and remote laser Raman spectroscopy, European Geosciences Union. Geophys Res Abstr 7:09114

    Google Scholar 

  • Rull F, Martinez-Frias J, Medina SJ, González-Pastor E (2004) A comparative analysis of mineral sulphates from Rio Tinto and Jaroso Ravin (Spain) using XRD, FTIR and Raman pectroscopy 6th International Conference on Raman Spectroscopy Applied to the Earth and Planetary Sciences June 6–11, 2004, Honolulu, Hawai’i, USA

  • Rull F, Martinez-Frias J (2006) Raman spectroscopy goes to Mars. Spectrosc Eur 18(1):18–21

    Google Scholar 

  • Sagan C, Pollack JB (1974) Differential transmission of sunlight on Mars: biological implications. Icarus 21:490–495

    Article  CAS  ADS  Google Scholar 

  • Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    CAS  ADS  PubMed  Google Scholar 

  • Schofield PF, Knight KS, Stretton IC (1996) Thermal expansion of gypsum investigated by neutron powder diffraction. Am Mineral 81(7–8):847–851

    CAS  Google Scholar 

  • Scott KM (2000) Nomenclature of the alunite supergroup: discussion. Can Mineral 38(5):1295–1297

    CAS  Google Scholar 

  • Souza de PA Jr, Squyres S, Arvidson R, Klingelhöfer G, Morris RV, Schröder C, Rodionov D, Rieder R, Christensen P, Herkenhoff K, Gorevan S, McSween H, Cabrol N, Bernhard B, Gellert R, Calvin W, Renz F, the Athena Science Team (2004) Mars mineralogy: preliminary results from Mars exploration Rovers Spirit and opportunity applied mineralogy. Pecchio et al. (eds) 2004, ICAM-BR, São Paulo, ISBN 85-98656-01-1

  • Spencer RJ (2000) Sulfate minerals in evaporite deposits. Reviews in mineralogy and geochemistry: sulfate minerals, crystallography, geochemistry, and environmental significance. C. N. Alpers, Jambor, J.L., and Nordstrom, D.K., 40:173–192

  • Spencer RJ, Hardie LA (1990) Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines. In: Spencer RJ, I-Ming Chou (eds) Fluid–mineral interactions: a tribute to H.P. Eugster. Geochem Soc Spec Pub 2:409–419

  • Squyres SW, Clifford SM, Kuzmin RO, Zimbelman JR, Costard FM (1992) Ice in the martian regolith. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. Univ. of Arizona Press, Tucson, pp 523–554

    Google Scholar 

  • Squyres SW, Grotzinger JP, Arvidson RE, Bell JF III, Calvin W, Christensen PR, Clark BC, Crisp JA, Farrand WH, Herkenhoff KE, Johnson JR, Klingelhöfer G, Knoll AH, McLennan SM, McSween HY, Morris RV, Rice JW Jr, Rieder R, Soderblom LA (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306(5702):1709–1714

    Article  PubMed  CAS  ADS  Google Scholar 

  • Squyres SW, Knoll AH (2005) Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240:1–10

    Article  CAS  ADS  Google Scholar 

  • Stoker CR, Stevens T, Amils R, Gómez-Elvira J, Rodríguez N, Gómez F, González-Toril E, Aguilera A, Fernández-Remolar D, Dunagan S, Lemke L, Zavaleta J, Sanz JL (2005) Characterization of a subsurface biosphere in a massive sulfide deposit at Rio Tinto, Spain: implications for extant life on Mars. Lunar Planet Sci XXXVI:1534.pdf

  • Stoker C, Lemke L, Mandell H, Mckay D, George J, Gomez-Elvira J, Amils R, Stevens T, Miller D (2003) Mars analog research and technology experiment (MARTE): a simulated Mars drilling mission to search for subsurface life at the Rio Tinto (Spain). Lunar Planet Sci XXXIV:1076.pdf

  • Stoker CR, Lemke LG, Cannon H, Glass B, Dunagan S, Zavaleta J, Miller D, Gomez-Elvira J (2006) The search for subsurface life on Mars: results from the MARTE analog drilling experiment in Rio Tinto, Spain. Lunar Planet Sci XXXVII:1537.pdf

  • Vaniman DT, Bish DL, Chipera SJ, Fialips CI, Carey JW, Feldman WC (2004) Magnesium sulphate salts and the history of water on Mars. Nature 431:663–665

    Article  PubMed  CAS  ADS  Google Scholar 

  • Villar SE, Edwards HG, Cockell CS (2005) Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130(2):156–162

    Article  PubMed  CAS  ADS  Google Scholar 

  • Wyatt MB, McSween HY (2002) Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417:263–266

    Article  PubMed  CAS  ADS  Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2000) Laser Raman microspectroscopy of surface microbial communities and protective biomolecules in situ: overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144:486–503

    Article  CAS  ADS  Google Scholar 

  • Yen AS, Murray BC, Grunthaner FJ, Rossman GR (1997) Ultraviolet radiation-induced dehydration of minerals: new experiments Lunar Planet Sci XXVIII:1755.pdf

  • Yen AS, Gellert R, Schroder C, Morris RV, Bell JF III, Knudson AT, Clark BC, Ming DW, Crisp JA, Arvidson RE, Blaney D, Bruckner J, Christensen PR, DesMarais DJ, de Souza PA Jr, Economou TE, Ghosh A, Hahn BC, Herkenhoff KE, Haskin LA, Hurowitz JA, Joliff BL, Johnson JR, Klingelhofer G, Madsen MB, McLennan SM, McSween HY, Richter L, Rieder R, Rodionov D, Soderblom L, Squyres SW, Tosca NJ, Wang A, Wyatt M, Zipfel J (2005) An integrated view of the chemistry and mineralogy of martian soils. vol 436, 7 July 2005, doi:10.1038/nature03637

  • Zhu M, Xie H, Guan H, Smith RK (2006) Mineral and lithologic mapping of Martian low-albedo regions using OMEGA data. LPSCXXXVII:2173.pdf

Download references

Acknowledgements

This work was supported by the Spanish Centro de Astrobiologia (CSIC/INTA), associated to the NASA Astrobiology Institute. Thanks to the Rover Environmental Monitoring Station (REMS) project. Maite Fernandez Sampedro, Maria Paz Martín Redondo and Dr Virginia Souza-Egipsy are acknowledged for their assistance with the analyses. Also thanks to three anonymous referees and Dr Alberto G. Fairén for their very helpful comments and remarks that have greatly improved the original manuscript. Special thanks to Dr David Hochberg for the revision of the English version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Martinez-Frias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Frias, J., Amaral, G. & Vázquez, L. Astrobiological significance of minerals on Mars surface environment. Rev Environ Sci Biotechnol 5, 219–231 (2006). https://doi.org/10.1007/s11157-006-0008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-006-0008-x

Keywords

Navigation