Skip to main content

Biotechnological Approaches to Combat Phytophagous Arthropods

  • Chapter
  • First Online:
Arthropod-Plant Interactions

Part of the book series: Progress in Biological Control ((PIBC,volume 14))

Abstract

New biotechnological approaches, based on the use of defence genes and the beneficial effects of the novel technology systems in terms of sustained agriculture are being explored to be integrated in pest resistance management. The development of insect-resistant crops have drastically increased since the commercial release of the first Bt-plant generation expressing a single Bacillus thuringiensis (Bt) toxin, 15 years ago (James 2010). These modified crops, successfully applied for agricultural use, triggered an important reduction of pesticide usage. However, pest resistance is still discussed (Carriere et al. 2010) and some phytophagous arthropods, particularly aphids and mites are moderate or insensitive to toxins encoded by Bt genes (Lawo et al. 2009; Li and Romeis 2010). Therefore, a great effort to search for alternative strategies of protecting crops from pest has been made. The development of plant genetic transformation has provided tools for transferring multiple pest resistance traits into agronomic important crop plants (Hilder and Boulter 1999; Christou et al. 2006; Ferry et al. 2006; Gatehouse 2008). This technology has been mainly focussed on the use of plant-derived genes with insecticidal and/or acaricidal properties and molecules or toxins from multiple sources that when expressed in a variety of plants resulted in enhanced resistance towards a wide spectrum of pests in laboratory assays. Currently, new molecular strategies for sustainable pest resistance in genetically enhanced crops are being provided from the understanding of endogenous resistant mechanisms developed by the plants as a result of the plant-herbivore interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen A, Virgos A, Olivella E, Villanueva J, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants over expressing two families of plant proteinase inhibitors. Plant Mol Biol 57:184–202

    Article  CAS  Google Scholar 

  • Alfonso-Rubí J, Ortego F, Castañera P, Carbonero P, Díaz I (2003) Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res 12:23–31

    Article  PubMed  Google Scholar 

  • Altabella T, Chrispeels MJ (1990) Tobacco plants transformed with the bean αai gene express an inhibitor of insect α-amylase in their seeds. Plant Physiol 93:805–810

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed 5:53–63

    Article  CAS  Google Scholar 

  • Alvarez-Alfageme F, Martinez M, Pascual-Ruiz S, Castañera P, Diaz I, Ortego F (2007) Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Res 16:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ankala A, Luthe DS, Williams WP, Wilkinson JR (2009) Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Mol Plant Microbe Interact 22:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Kumar PA, Premachandran MN, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin-expressing sugarcane with Cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Rep 29:383–395

    Article  PubMed  CAS  Google Scholar 

  • Barbosa A, Alburquerque EV, Silva MC, Souza DS, Oliveira-Neto OB, Valencia A, Rocha TL, Grossi-deSa (2010) α-amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits α-amylases from the coffee berry borer pest. BMC Biotechnol 10:44

    Google Scholar 

  • Bell HA, Fitches EC, Down RE, Ford L, Marris GC, Edwards JP, Gatehouse JA, Gatehouse AMR (2001) Effect of dietary cowpea trypsin inhibitor (CpTI) on the growth and development of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae) and on the success of the gregarious ectoparasitoid Eulophus pennicornis (Hymenoptera: Eulophidae). Pest Manag Sci 57:57–65

    Article  PubMed  CAS  Google Scholar 

  • Bonade-Bottino M, Lerin J, Zaccomer B, Jouanin J (1999) Physiological adaptation explains the insensitivity of Baris coerulescens to transgenic oilseed rape expressing oryzacystatin I. Insect Biochem Mol Biol 29:131–138

    Article  CAS  Google Scholar 

  • Bouchard E, Cloutier C, Michaud D (2003a) Oryzacystatin I expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant. Mol Ecol 12:2439–2446

    Article  PubMed  CAS  Google Scholar 

  • Bouchard E, Michaud D, Cloutier C (2003b) Molecular interaction between an insect predator and its herbivore prey on transgenic potato expressing a cysteine proteinase inhibitor from rice. Mol Ecol 12:2429–2437

    Article  PubMed  CAS  Google Scholar 

  • Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Prot 9:351–354

    Article  Google Scholar 

  • Brunelle F, Cloutier C, Michaud D (2004) Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato. Arch Insect Biochem Physiol 55:103–113

    Article  PubMed  CAS  Google Scholar 

  • Carbonero P, Diaz I, Vicente-Carbajosa J, Alfonso-Rubi J, Gaddour K, Lara P (1999) Cereal α-amylase/trypsin inhibitors and transgenic insect resistance. In: Scarascia Mugnozza GT, Porceddu E, Pagnotta MA (eds) Genetics and breeding for crop quality and resistance. Kluwer Academic Publishers, The Netherlands, pp 147–158

    Chapter  Google Scholar 

  • Carriere Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evol Appl 3:561–573

    Article  Google Scholar 

  • Carrillo L, Martinez M, Alvarez-Alfageme F, Castañera P, Smagghe G, Diaz I, Ortego F (2011a) A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants. Transgenic Res 20:305–319

    Article  PubMed  CAS  Google Scholar 

  • Carrillo L, Martínez M, Ramessar K, Cambra I, Castañera P, Ortego F, Diaz I (2011b) Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep 30:101–112

    Article  PubMed  CAS  Google Scholar 

  • Castagnoli M, Caccia R, Liguori M, Simoni S, Marinari S, Soressi GP (2003) Tomato transgenic lines and Tetranychus urticae: changes in plant suitability and susceptibility. Exp Appl Acarol 31:177–189

    Article  PubMed  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospect for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed  CAS  Google Scholar 

  • Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Mol Breed 5:357–365

    Article  CAS  Google Scholar 

  • Charity JA, Hughes P, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (2005) Pest and disease protection conferred by expression of barley beta-hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco. Funct Plant Biol 32:35–44

    Article  CAS  Google Scholar 

  • Chen M, Shelton A, Ye G (2010) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    Article  CAS  Google Scholar 

  • Christeller JT, Marwicke NP, Burguess EPJ, Malone LA (2010) The use of biotin-binding proteins for insect control. J Econ Entomol 103:497–508

    Article  PubMed  CAS  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospect in insect pest control in transgenic crops. Trends Plant Sci 11:302–308

    Article  PubMed  CAS  Google Scholar 

  • Christy LA, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). Plant Cell Rep 28:175–184

    Google Scholar 

  • Cipriani G, Michaud D, Brunelle F, Golmirzaie A, Zhang DP (1999) Expression of soybean proteinase inhibitor in sweetpotato. CIP Program Rep 98:271–277

    Google Scholar 

  • Cloutier C, Fournier M, Jean C, Yelle S, Michaud D (1999) Growth compensation and faster development of Colorado potato beetle (Coleoptera: Chrymelidae) feeding on potato foliage expressing oryzacystatin I. Arch Insect Biochem Physiol 40:69–79

    Article  CAS  Google Scholar 

  • Cloutier C, Jean C, Fournier M, Yelle S, Michaud D (2000) Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behaviour and over-production of insensitive protease. Arch Insect Biochem Physiol 44:69–81

    Article  PubMed  CAS  Google Scholar 

  • Confalonieri M, Allegro G, Balestrazzi A, Fogher C, Delledonne M (1998) Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (KTi3) gene. Mol Breed 4:137–145

    Article  CAS  Google Scholar 

  • Constabel C, Bergey C, Ryan C (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    Article  PubMed  CAS  Google Scholar 

  • Cooper SG, Douches DS, Grafius EJ (2006) Insecticidal activity of avidin combined with genetically engineered and traditional host plant resistance against Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 99:527–536

    Article  PubMed  CAS  Google Scholar 

  • Cowgill SD, Danks C, Atkinson HJ (2004) Multitrophic interactions involving genetically modified potatoes, nontarget aphids, natural enemies and hyperparasitoids. Mol Ecol 13:639–647

    Article  PubMed  CAS  Google Scholar 

  • Da Silveira V, Machado MG, Postali JR, Rodriguez ML (2009) Regulatory effects of an inhibitor from Plathymenia foliolosa seeds on the larval development of Anagasta kuehniella (Lepidoptera). Comp Biochem Physiol A 152:255–261

    Article  CAS  Google Scholar 

  • De Leo F, Gallerani R (2002) The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. Insect Biochem Mol Biol 32:489–496

    Article  PubMed  Google Scholar 

  • De Leo F, Bonadé-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118:997–1004

    Article  PubMed  Google Scholar 

  • De Leo F, Bonadé-Bottino MA, Ceci LR, Gallerani R, Jouanin L (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol 31:593–602

    Article  PubMed  Google Scholar 

  • De Sousa-Majer MJ, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJV (2004) Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific alpha-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55:497–505

    Article  PubMed  Google Scholar 

  • Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M (2001) Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Mol Breed 7:35–42

    Article  CAS  Google Scholar 

  • Delp G, Gradin T, Ahman I, Jonsson LMV (2009) Microarray analysis of the interaction between the aphid Rhopalosiphum padi and the host plants reveals both differences and similarities between susceptible and partially resistant barley lines. Mol Genet Genomics 281:233–248

    Article  PubMed  CAS  Google Scholar 

  • Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    Article  CAS  Google Scholar 

  • Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498

    Article  PubMed  CAS  Google Scholar 

  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 107:15011–15015

    Article  PubMed  CAS  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    Article  PubMed  CAS  Google Scholar 

  • Falco MC, Silva MC (2003) Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Physiol Biochem 41:761–766

    Article  CAS  Google Scholar 

  • Fang HJ, Li DL, Wang GL, Li YH (1997) An insect resistant transgenic cabbage plant with the cowpea trypsin inhibitor (CpTi) gene. Acta Bot Sin 39:940–945

    CAS  Google Scholar 

  • Ferry N, Raemaekers RJM, Majerus MEN, Jouanin L, Port G, Gatehouse JA, Gatehouse AMR (2003) Impact of oilseed rape expressing the insecticidal cysteine protease inhibitor oryzacystatin on the beneficial predator Harmonia axyridis (Multicoloured Asian ladybeetle). Mol Ecol 12:493–504

    Article  PubMed  CAS  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AMR (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451

    Article  PubMed  CAS  Google Scholar 

  • Fitches E, Audsley N, Gatehouse JA, Edwards JP (2002) Fusion proteins containing neuropeptides as novel insect control agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochem Mol Biol 32:1653–1661

    Article  PubMed  CAS  Google Scholar 

  • Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AMR, Gatehouse JA (2004) Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50:61–71

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse AMR, Shi Y, Powell KS, Brough C, Hilder VA, Hamilton WDO, Newell CA, Merryweather A, Boulter D, Gatehouse JA (1993) Approaches to insect resistance using transgenic plants. Philos Trans R Soc Lond Ser B 342:279–286

    Article  Google Scholar 

  • Gatehouse AMR, Down RE, Powell KS, Sauvion N, Rahbe Y, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA (1996) Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomol Exp Appl 79:295–307

    Article  Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgues EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Norton E, Davison GM, Babbé SM, Newell CA, Gatehouse JA (1999) Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea; effects of plant protease inhibitors in vitro and in vivo. J Insect Physiol 45:545–558

    Article  PubMed  CAS  Google Scholar 

  • Girad C, Bonade-Bottino M, Pham-Delegue MH, Jouanin L (1998a) Two strains of cabbage seed weevil (Coleoptera: Curculionidae) exhibit differential susceptibility to a transgenic oilseed rape expressing oryzacystatin I. J Insect Physiol 44:569–577

    Article  Google Scholar 

  • Girad C, Le Metayer M, Zaccomer B, Baellet E, Williams I, Bonade-Bottino M, Pham-Delegue M-H, Jouanin L (1998b) Growth stimulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor. J Insect Physiol 44:263–270

    Article  Google Scholar 

  • Golmirizaie A, Zhang DP, Nopo L, Newell CA, Vera A, Cisneros F (1997) Enhanced resistance to West Indian sweet potato weevil (Euscepes postfaciatus) in transgenic ‘Jewel’ sweet potato with cowpea trypsin inhibitor and snowdrop lectin. HortSci 32:435

    Google Scholar 

  • Graham J, Gordon SC, McNicol RJ (1997) The effect of the CpTi gene in strawberry against attack by vine weevil (Otiorhynchus sulcatus F Coleoptera: Curculionidae). Ann Appl Biol 131:133–139

    Article  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  PubMed  CAS  Google Scholar 

  • Han L, Wu K, Peng Y, Wang F, Guo Y (2008) Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guene’e). J Invertebr Pathol 96:71–79

    Article  CAS  Google Scholar 

  • Hao Y, Ao G (1997) Transgenic cabbage plants harbouring cowpea trypsin inhibitor (CPTI) gene showed improved resistance to two major insect pests, Pieris rapae nd Heliothis armigera. FASEB J 1:A868

    Google Scholar 

  • Heath RL, McDonald G, Christeller JT, Lee M, Bateman K, West J, Van Heeswijck R, Anderson MA (1997) Proteinase inhibitors from Nicotiana alata enhance plant resistance to insect pests. J Insect Physiol 43:833–842

    Article  PubMed  CAS  Google Scholar 

  • Hesler LS, Li Z, Cheesbrough TM, Riedell WE (2005) Nymphiposition and population growth of Rhopalosiphum padi L. (Homoptera: Aphididae) on conventional wheat cultivars and transgenic wheat isolines. J Entomol 40:186–196

    Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance - a critical review. Crop Prot 18:177–191

    Article  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    Article  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Boulter D (1989) Potential for exploiting plant genes to genetically engineer insect resistance, exemplified by the cowpea trypsin inhibitor gene. Pest Sci 27:165–171

    Article  CAS  Google Scholar 

  • Hoffman MP, Zalom FG, Wilson LT, Smilanick JM, Malyj LD, Kiser J, Hilder VA, Barnes WM (1992) Field evaluation of transgenic tobacco containing genes encoding Bacillus thuringiensis δ-endotoxin or cowpea trypsin inhibitor: efficacy against Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 85:2516–2522

    Google Scholar 

  • Hossain MA, Maiti MK, Basu A, Sen S, Ghose AK, Sen SK (2006) Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Sci 46:2022–2032

    Article  CAS  Google Scholar 

  • Huntington JA (2006) Shape-shifting serpins- advantages of a mobile mechanism. Trends Biochem Sci 31:427–435

    Article  PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:339–345

    Article  PubMed  CAS  Google Scholar 

  • Irie K, Hosoyama H, Takecuchi T, Iwabuchi K, Watanabe H, Abe M, Abe K, Arai S (1996) Transgenic rice established to express corn cystatin exhibits strong inhibitory activity against insect gut proteinases. Plant Mol Biol 30:149–157

    Article  PubMed  CAS  Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl 79:309–315

    Article  CAS  Google Scholar 

  • James C (2010) Global status of commercialized biotech/GM crops, ISAAA Brief 42. ISAAA, Itahca

    Google Scholar 

  • Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. Agric Food Chem 52:5135–5138

    Article  CAS  Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875

    Article  PubMed  CAS  Google Scholar 

  • Jongsma MA, Bakker PL, Peters J, Bosch D, Stiekema WJ (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92:8041–8045

    Article  PubMed  CAS  Google Scholar 

  • Jouanin L, Bonadé-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131:1–11

    Article  CAS  Google Scholar 

  • Khadeeva NV, Kochieva EZ, Yu M, Tcheredntchenkop MY, Yu E, Yakovieva EY, Sydoruk KV, Bogush VG, Dunaevsky YE, Belozersky MA (2009) Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress. Biochem (Moscow) 74:260–267

    Article  CAS  Google Scholar 

  • Klopfenstein NB, Allen KK, Avila FJ, Heuchlin SA, Martinez J, Carman RC, Hall ER, McNabb HS (1997) Proteinase inhibitor II gene in transgenic poplar: chemical and biological assays. Biomass Bioenerg 12:299–311

    Article  CAS  Google Scholar 

  • Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 58:2537–2552

    Article  PubMed  CAS  Google Scholar 

  • Kusnierczyk A, Winge P, Jostard TS, Troczynska J, Rossiter JT, Bones AM (2008) Towards global understanding of plant defence against aphids – timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–1111

    Article  PubMed  CAS  Google Scholar 

  • Lara P, Ortego F, Gonzalez-Hidalgo E, Castañera P, Carbonero P, Diaz I (2000) Adaptation of Spodoptera exigua (Lepidoptera: Noctuidae) to barley trypsin inhibitor BTI-CMe expressed in transgenic tobacco. Transgenic Res 9:169–178

    Article  PubMed  CAS  Google Scholar 

  • Lawo NC, Wackers FL, Romeis J (2009) Indian Bt cotton varieties do not affect the performance of cotton aphids. PLoS One 4:e4804

    Article  PubMed  CAS  Google Scholar 

  • Lawrence PK, Koundal KR (2001) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5:93–109

    Google Scholar 

  • Lecardonnel A, Chauvin L, Jouanin L, Beaujean A, Prevost G, Sangwan-Norreel B (1999) Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Sci 140:71–79

    Article  CAS  Google Scholar 

  • Lee SI, Lee SH, Koo JC, Chun HJ, Lim CO, Mun JH, Song YH, Cho MJ (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol Breed 5:1–9

    Article  Google Scholar 

  • Leple JC, Bonade-Bottino M, Augustin S, Pilate G, Le Tan VD, Deplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1:319–328

    Article  CAS  Google Scholar 

  • Li Y, Romeis J (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biol Control 56:157–164

    CAS  Google Scholar 

  • Li Y, Zhu Z, Chen ZX, Wu X, Wang W, Li SJ (1998) Obtaining transgenic cotton plants with cowpea trypsin inhibitor gene. Acta Gossip Sin 10:237–243

    Google Scholar 

  • Li G, Xu X, Xing H, Zhu H, Fan Q (2005) Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna + sbti transgenes. Pest Manag Sci 61:390–396

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Burton S, Glancy T, Li ZS, Hampton R, Meade T, Merlo DJ (2003) Insect resistance conferres by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 21:1222–1228

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhy-Salzman K (2005) Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol 139:1545–1556

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Wang A, Li H, Xia KF, Cai Y, Xu ZF (2009) Overexpression of a weed (Solanum americanum) proteinase inhibitor in transgenic tobacco results in increased glandular trychome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura. Int J Mol Sci 10:1896–1910

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran G, Pridmore L, Franz P, Anderson MA (2007) A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26:773–782

    Article  PubMed  CAS  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse ANR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance a range of different rice pest. Mol Breed 7:85–93

    Article  CAS  Google Scholar 

  • Marchetti S, Delledonne M, Fogher C, Chiaba C, Chiesa F, Savazzini F, Giordano A (2000) Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants. Theor Appl Genet 101:519–526

    Article  CAS  Google Scholar 

  • Markwick NP, Laing WA, Christeller JT, McHenry JZ, Newton MR (1998) Overproduction of digestive enzymes compensates for inhibitory effects of protease and α-amylase inhibitors fed to three species of leafrollers (Lepidoptera: Tortricidae). J Econ Entomol 91:1265–1276

    CAS  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu Y (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175:385–393

    Article  CAS  Google Scholar 

  • McManus MT, White DWR, McGregor PG (1994) Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Res 3:50–58

    Article  CAS  Google Scholar 

  • McManus MT, Burgess EPJ, Philip B, Watson LM, Laing WA, Voisey CR, White DWR (1999) Expression of the soybean (Kunitz) trypsin inhibitor in transgenic tobacco: effects on larval development of Spodoptera litura. Transgenic Res 8:383–395

    Article  CAS  Google Scholar 

  • Mehlo L, Gahakwa D, Nghia PT, Loc NT, Capell T, Gatehouse JA, Gatehouse AMR, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci USA 102:7812–7816

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki A, Nishizawa Y, Onodera H, Tabei Y, Toki S, Habu Y, Ugaki M, Ohashi Y (1999) Transgenic rice plants expressing a trypsin inhibitor are resistant against rice stem borers, Chilo suppressalis. Entomol Exp Appl 93:173–178

    Article  CAS  Google Scholar 

  • Morton R, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Hs JV (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

    Article  PubMed  CAS  Google Scholar 

  • Murray C, Markwick NP, Kaji R, Poulton J, Martin H, Christeller TJ (2010) Expression of various biotin-binding proteins in transgenic tobacco confers resistance to potato tuber moth, Phthorimaea operculella (Zeller) (fam. Gelechiidae). Transgenic Res 19:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Nandi AK, Basu D, Das S, Sen SK (1999) High level expression of soybean trypsin inhibitor gene in transgenic tobacco plants failed to confer resistance against damage caused by Helicoverpa armigera. J Biosci 24:445–452

    Article  CAS  Google Scholar 

  • Ninković S, Miljuš-Đukić J, Radović S, Maksimović V, Lazarević J, Vinterhalter B, Nešković M, Smigocki A (2007) Phytodecta fornicata Brüggemann resistance mediated by oryzacystatin II proteinase inhibitor transgene. Plant Cell Tissue Org Cult 91:289–294

    Article  CAS  Google Scholar 

  • Nissen MS, Kumar GNM, Youn B, Knowles DB, Ks L, Ballinger WJ, Knowles NR, Kang CH (2009) Characterization of Solamun tuberosum multicystatin and its structural comparison with other cystatins. Plant Cell 21:861–875

    Article  PubMed  CAS  Google Scholar 

  • Nutt KA, Allsopp PG, McGhie TK, Shepherd KM, Joyce PA, Taylor GO, McQuatter RB, Smith GR, Ogarth DM (1999) In: Proceedings of the 1999 Conference of the Australian Society of Sugarcane Technologists, Townsville, Brisbane, Australia, 27–30 April 1999, pp171–176

    Google Scholar 

  • Outchkourov NS, Kogel WJ, Schuuman-de Bruin A, Abrahamson M, Jongsma MA (2004a) Specific cysteine protease inhibitors act as deterrents of western flower thrips, Fanklinella occidentalis (Pergande), in transgenic potato. Plant Biotechnol J 2:439–448

    Article  PubMed  CAS  Google Scholar 

  • Outchkourov NS, Kogel WJ, Wiegers GL, Abrahamson M, Jongsma MA (2004b) Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips (Frankliniella occidentalis) in greenhouse trials. Plant Biotechnol J 2:449–458

    Article  PubMed  CAS  Google Scholar 

  • Pechan T, Ye L, Chang YM, Mitra A, Lin L, Davis FM, Williams WP, Luther SD (2000) A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and lepidopteran. Plant Cell 12:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Quilis J, Meynard D, Vila L, Avilés FX, Guiderdoni E, San Segundo B (2007) A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol J 5:537–553

    Article  PubMed  CAS  Google Scholar 

  • Rahbe Y, Derason C, Bonade-Bottino M, Girard C, Nardon C, Jouanin L (2003) Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Sci 164:441–450

    Article  CAS  Google Scholar 

  • Ribeiro APO, Pereira EJC, Galvan TL, Picanzo MC, Picoli EAT, da Silva DJH, Fari MG, Otoni WC (2006) Effect of eggplant transformed with oryzacystatin gene on Myzus persicae and Macrosiphum euphorbiae. J Appl Entomol 130:84–90

    Article  CAS  Google Scholar 

  • Rivard D, Cloutier C, Michaud D (2004) Colorado potato beetles show differential digestive compensatory responses to host plants expressing distinct sets of defense proteins. Arch Insect Biochem Physiol 55:114–123

    Article  PubMed  CAS  Google Scholar 

  • Royo J, León J, Vancanneyt G, Albar JP, Rosal S, Ortego F, Castañera P, Sánchez-Serrano JJ (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insects pests. Proc Natl Acad Sci USA 96:1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Sane VA, Nath P, Sane PV (1997) Development of insect-resistant transgenic plants using plant genes: expression of cowpea trypsin inhibitor in transgenic tobacco plants. Curr Sci 72:741–747

    CAS  Google Scholar 

  • Santos MO, Adang MJ, All JN, Boerma HR, Parrott WA (1997) Testing transgenes for insect resistance using Arabidopsis. Mol Breed 3:183–194

    Article  CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJ (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Schluter U, Benchabane M, Munger A, Kiggundu A, Vortster J, Goulet MC, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61:4169–4183

    Article  PubMed  CAS  Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie C, Chrispeels MJ, Spencer D, Higgins TJ (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L). Plant Physiol 107:1233–1239

    PubMed  CAS  Google Scholar 

  • Schuler TH, Denholm I, Jouanin L, Clark SJ, Clarak AJ, Poppy GM (2001) Population-scale laboratory studies of the effect of transgenic plants on nontarget insects. Mol Ecol 10:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar R, Cheng CP, Yeh KW (2010) Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol J 8:65–75

    Article  PubMed  CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic peas expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnol 12:793–796

    Article  CAS  Google Scholar 

  • Shulke RH, Murdock LL (1983) Lipoxygenase, trypsin inhibitor and lectin from soybeans: effects on larval growth of Manduca sexta (Lepidoptera: Sphingidae). Environ Entomol 12:787–791

    Google Scholar 

  • Solleti SK, Bakshi S, Purkavastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    Article  PubMed  CAS  Google Scholar 

  • Srinvasan T, Kumar KRR, Kirti PB (2009) Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol 650:541–553

    Article  CAS  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Stobion avenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Tang K, Zhao E, Sun X, Wan B, Qi H, Lu K (2001) Production of transgenic rice homozygous lines with enhanced resistance to the rice brown plant hopper. Acta Biotechnol 21:117–128

    Article  CAS  Google Scholar 

  • Van der Hoorn RAL (2008) Plant proteases: from phenotypes to molecular mechanism. Ann Rev Plant Biol 59:191–223

    Article  CAS  Google Scholar 

  • Vila L, Quilis J, Meynard D, Breitler JC, Marfa V, Murillo I, Vassal JM, Messeguer J, Guiderdoni E, San Segundo B (2005) Expression of the maize proteinase inhibitor (Mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. Plant Biotechnol J 3:187–202

    Article  PubMed  CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Wang J, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96

    Article  PubMed  CAS  Google Scholar 

  • Winterer J, Bergelson J (2001) Diamondback moth compensatory consumption of protease inhibitor-transformed plants. Mol Ecol 10:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Llewellyn D, Mathews A, Dennis ES (1997) Adaptation of Helicoverpa armigera (Lepidoptera: Noctuidae) to a proteinase inhibitor expressed in transgenic tobacco. Mol Breed 3:371–380

    Article  CAS  Google Scholar 

  • Wu A, Sun X, Pang Y, Tang K (2002) Homozygous transgenic rice lines expressing GNA with enhanced resistance to the rice sap-sucking pest Laodelphax striatellus. Plant Breed 121:9395

    Google Scholar 

  • Xu D, Xue Q, McElroy D, Mawal Y, Hilder VA, Wu R (1996) Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests. Mol Breed 2:167–173

    Article  CAS  Google Scholar 

  • Yeh KW, Lin MI, Tuan SJ, Chen YM, Lin CY, Kao SS (1997) Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Rep 16:696–699

    Article  CAS  Google Scholar 

  • Zhao JZ, Fan YL, Zhao RM, Fan XL (1998) Insecticidal activity of transgenic tobacco co-expressing Bt and CpTI genes on Helicoverpa armigera and its role in delaying pest resistance. Rice Biotechnol Quart 34:9–10

    Google Scholar 

  • Zhu YC, Adameczyk JJ Jr, West S (2005) Avidin, a potential biopesticide and synesgist to Bacillus thuringiensis toxins against field crop insects. J Econ Entomol 98:1566–1571

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Ahn JE, Salzman RA, Koiwa H, Shade RE, Balfe S (2003) Fusion of a soybean cysteine protease inhibitor and legume lectin enhances anti-insect activity synergistically. Agric For Entomol 5:317–323

    Article  Google Scholar 

Download references

Acknowledgements

We thank to Dr. Gonzalez-Melendi for critically reading the manuscript. Financial support from the Ministerio de Ciencia e Innovación (project BFU2008-01166) and from the Universidad Politecnica de Madrid/Comunidad de Madrid (project CCG10-UPM/AGR-5,242) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Diaz, I., Santamaria, M.E. (2012). Biotechnological Approaches to Combat Phytophagous Arthropods. In: Smagghe, G., Diaz, I. (eds) Arthropod-Plant Interactions. Progress in Biological Control, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3873-7_6

Download citation

Publish with us

Policies and ethics