Skip to main content

Key Biochemical Attributes to Assess Soil Ecosystem Sustainability

  • Chapter
  • First Online:
Environmental Protection Strategies for Sustainable Development

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

Soil is not a renewable resource, at least within the human timescale. In general, any anthropic exploitation of soils tends to disturb or divert them from a more “natural” development which, by definition, represents the best comparison term for measuring the relative shift from soil sustainability. The continuous degradation of soil health and quality due to abuse of land potentiality or intensive management occurs since decades. Soil microbiota, being ‘the biological engine of the Earth’, provides pivotal services in the soil ecosystem functioning. Hence, management practices protecting soil microbial diversity and resilience, should be pursued. Besides, any abnormal change in rate of innumerable soil biochemical processes, as mediated by microbial communities, may constitute early and sensitive warning of soil homeostasis alteration and, therefore, diagnoses a possible risk for soil sustainability. Among the vastness of soil biochemical processes and related attributes (bioindicators) potentially able to assess the sustainable use of soils, those related to mineralisation-immobilisation of major nutrients (C and N), including enzyme activity (functioning) and composition (community diversity) of microbial biomass, have paramount importance due to their centrality in soil metabolism. In this chapter we have compared, under various pedoclimates, the impact of different agricultural factors (fertilisation, tillage, etc.) under either intensive and sustainable managements on soil microbial community diversity and functioning by both classical and molecular soil quality indicators, in order to outline the most reliable soil biochemical attributes for assessing risky shifts from soil sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton DF, Gregorich EG (1995) The health of our soils. In: Acton DF, Gregorich EG (eds) Towards sustainable agriculture in Canada. Agriculture and Agri-food Canada, Ottawa

    Chapter  Google Scholar 

  • Acton DF, Padbury GA (1993) A conceptual framework for soil quality assessment and monitoring. A program to assess and monitor soil quality in Canada. Soil quality evaluation summary. Res Branch Agric. Ottawa, Canada

    Google Scholar 

  • Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labelling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887

    Article  CAS  Google Scholar 

  • Albiach R, Canet R, Pomares F, Ingelmo F (1999). Structure, organic components and biological activity in citrus soils under organic and conventional management. Agrochimica 43:235–241

    Google Scholar 

  • Al-Kaisi MM, Yin X (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J Environ Qual 34:437–445

    Article  CAS  Google Scholar 

  • Allison SD, Gartner T, Holland K, Weintraub M, Sinsabaugh RL (2007) Soil enzymes: linking proteomics and ecological process. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington

    Google Scholar 

  • Alvarez R, Díaz RA, Barbero N, Santanatoglia OJ, Blotta L (1995) Soil organic carbon, microbial biomass and CO2-C production from three tillage systems. Soil Till Res 33:17–28

    Article  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1989) Ratios of microbial biomass carbon to total carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agr Ecosyst Environ 98:285–293

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1985) Determination of ecophysiological maintenance requirements of soil micro-organisms in a dormant state. Biol Fertil Soils 1:81–89

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1989) Ratios of microbial biomass carbon to total carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of ecophysiological quotients (qCO2 and qD) on microbial biomass from soils of differing cropping histories. Soil Biol Biochem 25:393–395

    Article  Google Scholar 

  • Angers DA, N’dayegamiya AN, Cote D (1993) Tillage induced difference in organic matter of particle-size fractions and microbial biomass. Soil Sci Soc Am J 57:512–516

    Article  CAS  Google Scholar 

  • Araújo ASF, Santos VB, Monteiro RTR (2008) Response of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil. Eur J Soil Biol 44:225–230

    Article  Google Scholar 

  • Asuming-Brempong S, Gantner S, Adiku SGK, Archer G, Edusei V, Tiedje JM (2008) Changes in the biodiversity of microbial populations in tropical soils under different fallow treatments. Soil Biol Biochem 40:2811–2818

    Article  CAS  Google Scholar 

  • Avaniss-Aghajani E, Jones K, Chapman D, Brunk C (1994) A molecular technique for identification of bacteria using small sub-unit ribosomal RNA sequences. Biotechniques 17:144–149

    CAS  Google Scholar 

  • Badalucco L, De Cesare F, Grego S, Landi L, Nannipieri P (1997) Do physical properties of soil affect chloroform efficiency in lysing microbial biomass? Soil Biol Biochem 29:1135–1142

    Article  CAS  Google Scholar 

  • Badalucco L, Rao M, Colombo C, Palumbo G, Laudicina VA, Gianfreda L (2010) Reversing agriculture from intensive to sustainable improves soil quality in a semiarid South Italian soil. Biol Fertil Soils 46:481–489

    Article  Google Scholar 

  • Bailey VL, Peacock AD, Smith JL, Bolten Jr H (2002) Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol Biochem 34:1385–1389

    Article  CAS  Google Scholar 

  • Ball BC, Scott A, Parker JP (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Till Res 53:29–39

    Article  Google Scholar 

  • Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2004) Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Till Res 77:137–145

    Article  Google Scholar 

  • Bastida F, Moreno JL, Hernández T, García C (2006) Microbiological activity in a soil 15 years alter its devegetation. Soil Biol Biochem 38:2503–2507

    Article  CAS  Google Scholar 

  • Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma 147:159–171

    Article  CAS  Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994) Water-stable aggregates and organic matter fractions in conventional and no-tillage soils. Soil Sci Soc Am J 58:777–786

    Article  Google Scholar 

  • Béjà O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, Villacorta R, Amjadi M, Garrigues C, Jovanovich SB, Feldman RA, DeLong EF (2000a) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2:516–529

    Article  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000b) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  Google Scholar 

  • Benìtez E, Nogales R, Campos M, Ruano F (2006) Biochemical variability of olive-orchard soils under different management systems. Appl Soil Ecol 32:221–231

    Article  Google Scholar 

  • Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695

    Article  CAS  Google Scholar 

  • Biederbeck VO, Campbell CA, Ukrainetz H, Curtin D, Bouman OT (1996) Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia. Can J Soil Sci 76:7–14

    Article  CAS  Google Scholar 

  • Binkley D, Hart SC (1989) The components of nitrogen availability assessments in forest soils. Adv Soil Sci 10:57–112

    Article  CAS  Google Scholar 

  • Binladen J, Gilbert MTP, Bollback JP, Panitz F, Bendixen C (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2:e197

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Bloem J, Schouten AJ, Sørensen SJ, Rutgers M, van der Werf A, Breure AM (2006) Monitoring and evaluating soil quality. In: Bloem J, Benedetti A, Hopkins DW (eds) Microbiological methods for assessing soil quality. Wallingford, United Kingdom

    Google Scholar 

  • Böhme L, Langer U, Böhme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agr Ecosyst Environ 109:141–152

    Article  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in Cyanobacteria. Mol Biol Evol 18:1057–1069

    Article  CAS  Google Scholar 

  • Braker G, Ayala-del-Rio HL, Devol AH, Fesefeldt A, Tiedje JM (2001) Community structure of denitrifiers, Bacteria, and Archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol 67:1893–1901

    Article  CAS  Google Scholar 

  • Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy-metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Burns RG (1977) Soil enzymology. Sci Prog 64:275–285

    CAS  Google Scholar 

  • Burns RG (1978) Enzyme activity in soil: some theoretical and practical considerations. In: Burns RG (ed) Soil enzymes. Academic Press, London

    Google Scholar 

  • Caldwell B (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644

    Article  CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy EJ, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  Google Scholar 

  • Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques 34:790–794

    CAS  Google Scholar 

  • Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralisation, immobilisation and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349

    Article  CAS  Google Scholar 

  • DeLong EE, Pace NR (2001) Environmental diversity of Bacteria and Archaea. Syst Biol 50:470–478

    Article  CAS  Google Scholar 

  • Deng SP, Parham JA, Hattey JA, Babu D (2006) Animal manure and anhydrous ammonia amendment alter microbial carbon use efficiency, microbial biomass, and activities of dehydrogenase and amidohydrolases in semiarid agroecosystems. Appl Soil Ecol 33:258–268

    Article  Google Scholar 

  • Denti EA, Reis EM (2001) Efeito da rotação de culturas, da monocultura e da densidade de plantas na incidência das podridões da base do colmo e no rendimento de grãos do milho. Fitopatologia Brasileira 26:635–639

    Article  Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  CAS  Google Scholar 

  • Dick RP (1994) Soil enzyme activities as indicators of soil quality. In: Doran JW (ed) Defining soil quality for sustainable environment. Soil science society of America, special publication 35. SSSA-ASA, Madison

    Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil science society of America, Madison

    Google Scholar 

  • Dilly O, Bach HJ, Buscot F, Eschenbach C, Kutsch WL, Middelhoff U, Pritsch K, Munch JC (2000) Characteristics and energetic strategies of the rhizosphere in ecosystems of the Bornhöved Lake district. Appl Soil Ecol 15:201–210

    Article  Google Scholar 

  • Dilly O, Blume HP, Sehy U, Jiménez M, Munich JC (2003) Variation of stabilised, microbial and biologically active carbon and nitrogen soil under contrasting land use and agricultural management practices. Chemosphere 52:557–569

    Article  CAS  Google Scholar 

  • Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biol Fertil Soils 27:374–379

    Article  CAS  Google Scholar 

  • Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44:764–771

    Google Scholar 

  • Doran JW, Fraser DG, Culik MN, Liebhardt WC (1987) Influence of alternative and conventional agriculture management on soil microbial processes and nitrogen availability. Am J Altern Agric 2:99–106

    Article  Google Scholar 

  • Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (Eds) Methods for assessing soil quality. Soil Sci Soc Am Spec Public, Madison

    Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soils health and sustainable productivity. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford

    Google Scholar 

  • Doran JW, Sarrantonio M, Jaure R (1994) Strategies to promote soil quality and health. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Melbourne

    Google Scholar 

  • Drinkwater LE, Cambardella CA, Reeder JD, Rice CW (1996) Potentially mineralizable nitrogen as an indicator of biologically active soil nitrogen. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison

    Google Scholar 

  • Drinkwater LE, Letoumeau DK, Workneh F, van Bruggen AHC, Shennan C (1995) Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol Appl 5:1098–1112

    Article  Google Scholar 

  • Droogers P, Bouma J (1996) Biodynamic versus conventional farming effects on soil structure expressed by simulated potential productivity. Soil Sci Soc Am J 60:1552–1558

    Article  CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing—Linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  Google Scholar 

  • Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    Article  CAS  Google Scholar 

  • Edwards NT (1975) Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci Soc Am J 39:361–365

    Article  CAS  Google Scholar 

  • Elshahed MS, Youssef NH, Spain AM, Sheik C, Najar FZ, Sukharnikov LO, Roe BA, Davis JP, Schloss PD, Bailey VL, Krumholz LR (2008) Novelty and uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol 74:5422–5428

    Article  CAS  Google Scholar 

  • Emmerling C, Udelhoven T, Schröder D (2001) Response of soil microbial biomass and activity to agriculture de-intensification over a 10 year period. Soil Biol Biochem 33:2105–2114

    Article  CAS  Google Scholar 

  • Federle TW (1986) Microbial distribution in soil—new techniques. In: Megusar F, Gantar M (eds) Perspectives in Microbial Ecology. Ljubljana Slovene Society for Microbiology, Ljubljana

    Google Scholar 

  • Fedoroff N (1987) The production potential of soils. Part 1. Sensitivity of principal soil types to the intensive agriculture of north-western Europe. In: Barth E, L’Hermite P (eds) Scientific basis for soil protection in the European community. Elsevier, London

    Google Scholar 

  • Feng XJ, Simpson MJ (2009) Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biol Biochem 41:804–812

    Article  CAS  Google Scholar 

  • Ferreira MC, Andrade DS, Chueire LMO, Takemura SM, Hungria M (2000) Effects of tillage method and crop rotation on the population sizes and diversity of bradryhizobia nodulating soybean. Soil Biol Biochem 32:627–637

    Article  CAS  Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agr Ecosyst Environ 88:169–174

    Article  Google Scholar 

  • Fließbach A, Madër P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768

    Article  Google Scholar 

  • Fließbach A, Mäder P, Niggli U (2000) Mineralization and microbial assimilation of 14C-labeled straw in soils of organic and conventional agricultural systems. Soil Biol Biochem 32:1131–1139

    Article  Google Scholar 

  • Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220

    Article  CAS  Google Scholar 

  • Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M (2007) Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Till Res 92:18–29

    Article  Google Scholar 

  • Fraser DG, Doran JW, Sahs WW, Lesoing GW (1988) Soil microbial populations and activities under conventional and organic management. J Environ Qual 17:585–590

    Article  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegård A, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Gamble MD, Bagwell CE, LaRocque J, Bergholz PW, Lovell CR (2009) Seasonal variability of diazotroph assemblages associated with the rhizosphere of the salt marsh cordgrass, spartina alterniflora. Microb Ecol 59:253–265

    Article  Google Scholar 

  • Garcia C, Hernandez T, Costa F (1994) Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem 26:1185–1191

    Article  CAS  Google Scholar 

  • García-Ruiz R, Ochoa V, Hinojosa MB, Carreira JA (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol Biochem 40:2137–2145

    Article  CAS  Google Scholar 

  • Ge G, Li Z, Fan F, Chu G, Hou Z, Liang Y (2010) Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 326:31–44

    Article  CAS  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leiròs MC, Seoan S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez MA, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N, and P responses to long-term tillage and crop rotation. Soil Tillage Res 106:285–293

    Article  Google Scholar 

  • Gregorich EG, Turchenek LW, Carter MR, Angers DA (2001) Soil and environmental science, dictionary. In: Gregorich EG, Turchenek LW, Carter MR, Angers DA (eds) Canadian society of soil science. CRC Press, Washington

    Google Scholar 

  • Guckert JB, Hood MA, White DC (1986) Phospholipid esterlinked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801

    CAS  Google Scholar 

  • Gunapala N, Scow K (1997) Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol Biochem 30:805–816

    Article  Google Scholar 

  • Halvorson JJ, Smith JL, Papendick RI (1996) Integration of multiple soil parameters to evaluate soil quality: a field experiment example. Biol Fertil Soils 21:207–214

    Article  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  CAS  Google Scholar 

  • Hartmann M, Widmer F (2008) Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol Ecol 63:249–260

    Article  CAS  Google Scholar 

  • Harwood RR (1990) A history of sustainable agriculture. In: Edwards CA, Lal R, Madden JP, Miller RH, House G (eds) Sustainable agricultural systems, Ankeny IA, soil and water conservation society. Ankeny, USA

    Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • He Z, Gentry TJ, Schadt TW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  Google Scholar 

  • Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem 34:1299–1307

    Article  CAS  Google Scholar 

  • Heipieper HJ, Meulenbeld G, Oirschot QV, de Bont JAM (1996) Effect of environment factors on trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777

    CAS  Google Scholar 

  • Hinojosa MB, García-Ruiz R, Vinegla B, Carreira JA (2004) Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcòllar toxic spill. Soil Biol Biochem 36:1637–1644

    Article  CAS  Google Scholar 

  • Hoffmann LL, Reis EM, Forcelini CA, Panisson E, Mendes CS, Casa RT (2004) Efeito da rotação de cultura, de cultivares e da aplicação de fungicida sobre o rendimento de grãos e doenças foliares em soja. Fitopatol Bras 29:245–251

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hopkins DW, Sparrow AD, Shillam LL, English LC, Dennis PG, Novis P, Elberling B, Gregorich EG, Greenfield LG (2008) Enzymatic activities and microbial communities in an Antarctic dry valley soil: responses to C and N supplementation. Soil Biol Biochem 40:2130–2136

    Article  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  Google Scholar 

  • Hungria M, Stacey G (1997) Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biol Biochem 29:819–830

    Article  CAS  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch MD (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8: R143

    Article  CAS  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between soil organic-carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188

    Article  Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178

    Article  Google Scholar 

  • Jabro JD, Sainju U, Stevens WB, Evans RG (2008) Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J Environ Manag 88:1478–1484

    Article  CAS  Google Scholar 

  • Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415

    Article  Google Scholar 

  • Jackson W (2002) Natural systems agriculture: a truly radical alternative. Agr Ecosyst Environ 88:111–117

    Article  Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystem. CAB int., Wallingford

    Google Scholar 

  • Jenkinson DS, Hart PBS, Rayner JN, Parry LC (1987) Modelling the turnover of organic matter in long-term experiments at Rothamsted. Intecol Bull 15:1–8

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil Biochemistry. Dekker, New York

    Google Scholar 

  • Jenkinson DS, Parry LC (1989) The nitrogen cycle in the Broadbalk Wheat Experiment: A model for the turnover of nitrogen through the soil microbial mass. Soil Biol Biochem 21:535–541

    Article  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effect of biocidal treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8:209–213

    Article  CAS  Google Scholar 

  • Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the microbial biomass at elevated-temperatures. Soil Biol Biochem 22:1129–1136

    Article  Google Scholar 

  • Kandeler E, Stemmer M, Klimanek EM (1999a) Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem 31:261–273

    Article  CAS  Google Scholar 

  • Kandeler E, Palli S, Stemmer M, Gerzabek MH (1999b) Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biol Biochem 31:1253–1264

    Article  CAS  Google Scholar 

  • Keeney DR (1980) Prediction of soil nitrogen availability in forest ecosystems: a literature review. For Sci 26:159–171

    Google Scholar 

  • Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci Soc Am J 57:200–210

    Article  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kizilkaya R, Aşkin T, Bayrakli B, Sağlam M (2004) Microbiological characteristics of soils contaminated with heavy metals. Eur J Soil Biol 40:95–102

    Article  CAS  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  CAS  Google Scholar 

  • Klein DA, Sorensen DL, Redente EF (1985) Soil enzymes: a predictor of reclamation potential and progress. In: Tate RL, Klein DA (eds) Soil reclamation processes. Microbiological analyses and applications. Marcel Dekker, New York

    Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2009) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Ladd JN, Butler HA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  • Landi L, Renella G, Moreno JL, Falchini L, Nannipieri P (2000). Influence of cadmiuum on the metabolic quotient, L-:D-glutamic acid respiration ratio and enzyme activity:microbial biomass ratio under laboratory conditions. Biol Fertil Soils 32:8–16

    Google Scholar 

  • Laudicina VA, Hurtado Bejarano MD, Badalucco L, Delgado A, Palazzolo E, Panno M (2009) Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biol Fertil Soils 45:691–700

    Article  CAS  Google Scholar 

  • Lechevalier MP (1977) Lipids in bacterial taxonomy—a taxonomist’s view. Crit Rev Microbiol 5:109–210

    Article  CAS  Google Scholar 

  • Leckie SA, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW (2004) Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biol Biochem 36:529–532

    Article  CAS  Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    CAS  Google Scholar 

  • Lee TK, Van Doan T, Yoo K, Choi S, Kim C, Park J (2010) Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Appl Microbiol Biotech 87:2335–2343

    Google Scholar 

  • Liao M, Xiao XM (2007) Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicol Environ Saf 66:217–223

    Article  CAS  Google Scholar 

  • Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299

    Article  CAS  Google Scholar 

  • Logan TJ, Lal R, Dick WA (1991) Tillage systems and soil properties in North America. Soil Till Res 20:241–270

    Article  Google Scholar 

  • Lorenz N, Verdell K, Ramsier C, Dick RP (2010) A rapid assay to estimate soil microbial biomass potassium in agricultural soils. Soil Sci Soc Am J 74:512–516

    Article  CAS  Google Scholar 

  • Madan R, Pankhurst C, Hawke B, Smith S (2002) Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128

    Article  CAS  Google Scholar 

  • Madsen EL (1996) A critical analysis of methods for determining the composition and biogeochemical activities of soil microbial communities in situ. In: Stotzky G, Bollag JM (eds) Soil biochemistry. Marcel Dekker, New York

    Google Scholar 

  • Mallouhi N, Jacquin F (1985) Essai de correlation entre proprietes biochimiques d’un sol salsodique et sa biomasse. Soil Biol Biochem 17:23–26

    Article  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002a) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Ostle N, Ineson P, Bailey MJ (2002b) Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. Rapid Commun Mass Spec 16:2179–2183

    Article  CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  Google Scholar 

  • McKinley VL, Peacock AD, White DC (2005) Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol Biochem 37:1946–1958

    Article  CAS  Google Scholar 

  • Melero S, Madejòn E, Ruiz JC, Herencia JF (2007) Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur J Agron 36 26:327–334

    Article  CAS  Google Scholar 

  • Mielnick PC, Dugas WA (1999) Soil CO2 flux in a tallgrass prairie. Soil Biol Biochem 32:221–228

    Article  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nannipieri P, Ceccanti B, Grego S (1990) Ecological significance of biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York

    Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York

    Google Scholar 

  • Nannipieri P, Paul E (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369

    Article  CAS  Google Scholar 

  • Nogueira MA, Albino UB, Brandão-Junior O, Braun G, Cruz MF, Dias BA, Duarte RTD, Gioppo NMR, Menna P, Orlandi JM, Raimam MP, Rampazzo LGL, Santos MA, Silva MEZ, Vieira FP, Torezan JMD, Hungria M, Andrade G (2006) Promising indicators for assessment of agroecosystems alteration among natural, reforested and agricultural land use in southern Brazil. Agr Ecosyst Environ 115:237–247

    Article  Google Scholar 

  • O’Leary WM, Wilkinson SG (1988) Gram-positive bacteria. In: Ratledge C, Wilkindon SC (eds) Microbial lipids. Academic Press, London

    Google Scholar 

  • Ogilvie LA, Hirsch PR, Johnston AWB (2008) Bacterial diversity of the Broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol 56:525–537

    Article  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Ouverney CC, Fuhrman JA (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65:1746–1752

    CAS  Google Scholar 

  • Palm C, Robertson GP, Vitousek PM (1993) Nitrogen availability. In: Anderson JM, Ingram JSI (eds) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Oxford

    Google Scholar 

  • Papendick RI, Parr JF (1992) Soil quality—the key to a sustainable agriculture. Am J Altern Agric 7:2–3

    Article  Google Scholar 

  • Parkin TB, Doran JW, Franco-VizCaino E (1996) Field and laboratory tests of soil respiration. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison

    Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (1992). Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Alter Agr 7:5–11

    Article  Google Scholar 

  • Paul EA (1984) Dynamics of organic matter in soils. Plant Soil 76:275–285

    Article  CAS  Google Scholar 

  • Paul EA, Harris D, Klug MJ, Ruess WR (1999) The determination of microbial biomass. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York

    Google Scholar 

  • Pereira AA, Hungria M, Franchini JC, Kaschuk G, Chueire LMO, Campo RJ, Torres E (2007) Variações qualitativas e quantitativas na microbiota do solo e na fixação biológica do nitrogênio sob diferentes manejos com soja. Rev Bras Ciência Solo 31:1397–1412

    Article  CAS  Google Scholar 

  • Perez-de-Mora A, Burgos P, Madejon E, Cabrera F, Jaeckel P, Scholter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Article  CAS  Google Scholar 

  • Pettersson M, Bååth E (2003) The rate of change of a soil bacterial community after liming as a function of temperature. Micr Ecol 46:177–186

    CAS  Google Scholar 

  • Pettit NM, Gregory LJ, Freedman RB, Burns RG (1977) Differential stabilities of soil enzymes. Assay and properties of phosphatase and arylsulphatase. Acta Biochim Biophys 485:357–366

    Article  CAS  Google Scholar 

  • Pietikainen J, Hiukka R, Fritze H (2000) Does short term heating of forest humus change its properties as a substrate for microbes? Soil Biol Biochem 32:277–288

    Article  CAS  Google Scholar 

  • Powlson DS, Jenkinson DS (1981) A comparison of the organic matter, biomass, adenosine-triphosphate, and mineralizable nitrogen contents of ploughed and direct drilled soils. J Agric Sci 97:713–721

    Article  CAS  Google Scholar 

  • Puglisi E, Nicelli M, Capri E, Trevisan M, Del Re AAM (2005) A soil alteration index based on phospholipid fatty acids. Chemosphere 61:1548–1557

    Article  CAS  Google Scholar 

  • Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    Article  CAS  Google Scholar 

  • Ragab M (1993) Distribution pattern of soil microbial population in salt affected soils. In: Lieth H, Al-Masoom AA (eds) Towards rational use of high salinity tolerant plants, Deliberations about high salinity tolerant plants and ecosystems. Kluwer, Dordrecht

    Google Scholar 

  • Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H (1996) Clostridium paradoxum DSM7308(T) contains multiple 16S rRNA genes with heterogenous intervening sequences. Microbiol 142:2087–2095

    Article  CAS  Google Scholar 

  • Rampazzo N, Mentler A (2001) Influence of different agricultural land-use on soil properties along the Austrian–Hungarian border. Bodenkultur 52:89–115

    CAS  Google Scholar 

  • Rassmussen PE, Collins HP, Smiley RE (1989) Long-term management effects on soil productivity and crop yields in semi-arid regions of eastern Oregon. Station Bulletin 675. USDA-ARS and Oregon State University, Pendleton

    Google Scholar 

  • Ratledge C, Wilkinson SG (1988) Microbial lipids. Academic Press, London

    Google Scholar 

  • Reganold JP (1988) Comparison of soil properties as influenced by organic and conventional farming systems. Am J Alt Agr 3:144–155

    Article  Google Scholar 

  • Rice CW, Moorman TB, Beare M (1996) Role of microbial biomass carbon and nitrogen in soil quality. In: Doran JW, Jones AJ, (eds) Methods for assessing soil quality. Soil Science Society of America Special Publication 49, Madison

    Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Riffaldi R, Saviozzi A, Levi-Minzi R (1996) Carbon mineralization kinetics as influenced by soil properties. Biol Fertil Soils 22:293–298

    Article  CAS  Google Scholar 

  • Ritchie NJ, Schutter ME, Dick RP, Myrold DD (2000). Use of length heterogeneity-PCR and FAME to characterize microbial communities in soil. Appl Environ Microbiol 66:1668–1675

    Google Scholar 

  • Robertson GP, Tiedje JM (1985) Denitrification and nitrous oxide production in successional and old growth Michigan forest. Soil Sci Soc Am J 48:383–389

    Article  Google Scholar 

  • Robertson GP, Wedin D, Groffman PM, Blair JM, Holland EA, Nadelhoffer KJ, Harris D (1999) Soil carbon and nitrogen availability. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York

    Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  Google Scholar 

  • Roldán A, Caravaca F, Hernández MT, Garcìa C, Sánchez-Brito C, Velásquez M, Tiscareño M (2003) No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Till Res 72:65–73

    Article  Google Scholar 

  • Santos HP, Lhamby JCB, Prestes AM, Lima MR (2000). Efeito de manejo de solo e de rotação de culturas de inverno no rendimento e doenças de trigo. Pesquisa Agropecuária Brasileira 35:2355–2361

    Google Scholar 

  • Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668

    Article  CAS  Google Scholar 

  • Simek M, Hopkins DW, Kalcik J, Picek T, Santruckova H, Stana J, Travnik K (1999) Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol Fertil Soils 29:300–308

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agr Ecosyst Environ 34:43–54

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Moorhead DL, Linkins AE (1994) The enzymatic basis of plant litter decomposition: emergence of an ecological process. Appl Soil Ecol 1:97–111

    Article  Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag JM, Stotzky G (eds) Soil Biochemistry, vol 6. Dekker, New York, pp 359–396

    Google Scholar 

  • Sinsabaugh RL, Gallo ME, Lauber C, Waldrop M, Zak DR (2005) Extracellular enzyme activities and soil carbon dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed BA, Steven D, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    Google Scholar 

  • Skujins J (1973) Dehydrogenase: an indicator of biological activities in arid soils. Bull Ecol Res Commun 17:235–241

    CAS  Google Scholar 

  • Skujins J (1978) Hystory of abiontic soil enzyme research. In: Burns RG (ed) Soil enzymes. Academic Press, London

    Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Meth 69:470–479

    Article  CAS  Google Scholar 

  • Smit S, Widmann J, Knight R (2007) Evolutionary rates vary among rRNA structural elements. Nucleic Acids Res 35:3339–3354

    Article  CAS  Google Scholar 

  • Smith JL, Halvorson JJ, Papendick RI (1993) Using multiple-variable indicator kriging for evaluating soil quality. Soil Sci Soc Am J 57:743–749

    Article  Google Scholar 

  • So HB, Kirchhof G, Bakker R, Smith GD (2001) Low input tillage/cropping system for limited resource areas. Soil Till Res 61:109–123

    Article  Google Scholar 

  • Sojka RE, Upchurch DR (1999) Reservations regarding the soil quality concept. Soil Sci Soc Am J 63:1039–1054

    Article  CAS  Google Scholar 

  • Sorek R, Zhu YW, Creevey CJ, Francino MP, Bork P, Rubin EM (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452

    Article  CAS  Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207

    Article  CAS  Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological Indicators of Soil Health. CAB International, Wallingford

    Google Scholar 

  • Speir TW (1977) Studies on a climosequence of soils in tussock grassland. 11. Urease, phosphatase and sulphatase activities of topsoils and their relationships with other properties including plant available sulfur. N Z J Sci 20:159–166

    CAS  Google Scholar 

  • Speir TW, Ross DJ (1976) Studies on a climosequence of soils in tussock grassland. 9. Influence of age of Chionochloa rigida on enzyme activities. N Z J Sci 19:389–396

    CAS  Google Scholar 

  • Sprent N (1987) The ecology of the nitrogen cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Stefanic G, Eliade G, Chinorgeanu I (1984) Researches concerning a biological index of soil fertility. In: Nemes MP, Kiss S, Papacostea P, Stefanic G, Rusan M (eds) Fifth symposium on soil biology. Roman National Society of Soil Science, Bucharest

    Google Scholar 

  • Steger K, Jarvis Å, Smårs S, Sundh I (2003) Comparison of signature lipid methods to determine microbial community structure in compost. J Microbiol Meth 55:371–382

    Article  CAS  Google Scholar 

  • Stenberg B (1999) Monitoring soil quality of arable land: microbiological indicators. Acta Agric Scand 49:1–24

    Google Scholar 

  • Stenberg B, Pell M, Torstensson L (1998) Integrated evaluation of variation in biological, chemical and physical soil properties. Ambio 27:9–15

    Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL (ed) Methods of soil analysis, part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulphatase activity of soils. Soil Sci Soc Am Proc 34:427–429

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1972) Assay of urease activity in soils. Soil Biol Biochem 4:479–487

    Article  CAS  Google Scholar 

  • Taylor JP, Wilson M, Mills S, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    Article  CAS  Google Scholar 

  • Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. doi:10.1038/ismej.2010.35

    Google Scholar 

  • Thirukkumaran CM, Parkinson D (2000) Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biol Biochem 32:59–66

    Article  CAS  Google Scholar 

  • Toor GS, Condron LM, Di HJ, Cameron KC, Cade-Menum BJ (2003) Characterisation of organic phosphorus in leachate from a grassland soil. Soil Biol Biochem 35:1317–1323

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Gil-Sotres F, Leiròs MC (2007) Thermodynamic parameters of enzymes in grassland soils of Galicia, NW Spain. Soil Biol Biochem 39:311–319

    Article  CAS  Google Scholar 

  • Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality Biochem 40:2146–2155

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Leiròs MC, Gil-Sotres F, Seoane S (1998) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106

    Article  CAS  Google Scholar 

  • Turner BL, McKelvie ID, Haygarth PM (2002) Characterisation of water extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem 34:27–35

    Article  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wagner M, Nielsen PH, Loy A, Nielsen JL, Daims H (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotech 17:83–91

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient qCO2 as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    Article  CAS  Google Scholar 

  • Weigel A, Klimanek EM, Körschens M, Mercik S (1998) Investigations of carbon and nitrogen dynamics in different long-term experiments by means of biological soil properties. In: Lal R, Kimble JM, Follet RF, Stewart BA (eds) Soil processes and the carbon cycle, papers from a symposium entitled “Carbon Sequestration in Soil”. CRC Press, Boca Raton

    Google Scholar 

  • White DC, Davies WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    Article  CAS  Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fertil Soils 44:943–953

    Article  Google Scholar 

  • Wu J, O’Donnell AG, He ZL, Syers JK (1994) Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol Biochem 26:117–125

    Article  CAS  Google Scholar 

  • Wu Y, Ding N, Wang G, Xu J, Wu J, Brookes PC (2009) Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses. Geoderma 150:171–178

    Article  CAS  Google Scholar 

  • Yakovchenko VI, Sikora LJ, Rauffman DD (1996) A biologically based indicator of soil quality. Biol Fertil Soils 21:245–251

    Article  Google Scholar 

  • Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451

    Article  CAS  Google Scholar 

  • Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64:3444–3450

    CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zhang YY, Dong JD, Yang ZH, Zhang S, Wang YS (2008) Phylogenetic diversity of nitrogen-fixing bacteria in mangrove sediments assessed by PCR-denaturing gradient gel electrophoresis. Arch Microbiol 190:19–28

    Article  CAS  Google Scholar 

  • Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511–522

    Article  CAS  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Badalucco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laudicina, V., Dennis, P.G., Palazzolo, E., Badalucco, L. (2012). Key Biochemical Attributes to Assess Soil Ecosystem Sustainability. In: Malik, A., Grohmann, E. (eds) Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_6

Download citation

Publish with us

Policies and ethics