Skip to main content

The Components of Nitrogen Availability Assessments in Forest Soils

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 10))

Abstract

The availability of nitrogen (N) limits production in many forest ecosystems, and many methods are available for estimating N availability (Keeney, 1980; Binkley 1986; Mahendrappa et al., 1986; Binkley and Vitousek, 1989). The concept of soil availability may represent the rate at which N is converted from unavailable to available forms within the rooting zone (Scarsbrook, 1965). Alternatively, it may refer to the extent to which plant production is constrained by a limited supply of available N. These two aspects of N availability were termed N supply rate and N limitation by Chapin et al. (1986). In agroecosystems, N supply rate and N limitation are often closely linked. In forest ecosystems, differences in species composition, stand age, and soil moisture may uncouple low N supply from N limitation (Chapin et al., 1986). In addition, the nonuniform rooting distribution of trees and the presence of forest floors add spatial complexities to forest N cycles that make it more difficult to estimate N availability in forests than in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J., J.M. Melillo, K. Nadelhoffer, C. McClaugherty, and J. Pastor. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. Oecologia 66:317–321.

    Article  Google Scholar 

  • Adams, M., and P. Attiwill. 1986a. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. I. Nutrient cycling and nitrogen turnover. Plant and Soil 92:319–339.

    Article  CAS  Google Scholar 

  • Adams, M., and P. Attiwill. 1986b. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. II. Indices of nitrogen mineralization. Plant and Soil 92:341–362.

    Article  CAS  Google Scholar 

  • Amato, M., and J.N. Ladd. 1980. Studies of nitrogen immobilization and mineralization in calcareous soils-V. Formation and distribution of isotope-labelled biomass during decomposition of 14C-and 15N-labelled plant material. Soil Biol. Biochem. 12:405–411.

    Article  CAS  Google Scholar 

  • Amer, R, D. Bouldin, C. Black, and F. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and P-32 equilibration. Plant and Soil 6:391–408.

    Article  CAS  Google Scholar 

  • Antonietti, A. 1968. Le associazioni forestall dell’orizzonte submontano del Cantone Ticino su substrati pedogenticic ricchi di carbonati. Mitt. Schweiz. Anst. Forstl. Versuchswes 44:85–226.

    Google Scholar 

  • Azam F., K.A. Malik, and F. Hussain. 1986. Microbial biomass and mineralizationimmobilization of nitrogen in some agricultural soils. Biol. Pert. Soil 2:157–163.

    Google Scholar 

  • Barraclough, D., and M.J. Smith. 1987. The estimation of mineralization, immobilization and nitrification in nitrogen-15 field experiments using computer simulation. J. Soil Sci. 38:519–530.

    Article  CAS  Google Scholar 

  • Barber, S.A. 1974. Influence of the plant root on ion movement in soil. In: E.W. Carson (ed.), The plant root and its environment. Univ. Press of Virginia, Charlotte, pp. 525–564.

    Google Scholar 

  • Binkley, D. 1982. Nitrogen fixation and net primary production in a young Sitka alder stand. Can. J. Bot. 60:281–284.

    Article  CAS  Google Scholar 

  • Binkley, D. 1983. Ecosystem production in Douglas-fir plantation: Interaction of red alder and site fertility. For. Ecol. Manage. 5:215–227.

    Article  Google Scholar 

  • Binkley, D. 1984a. Does forest removal increase rates of decomposition and nitrogen availability? For. Ecol. Manage. 8:229–233.

    Article  Google Scholar 

  • Binkley, D. 1984b. Ion exchange resin bags: Factors affecting estimates of nitrogen availability. Soil Sci. Soc. Am. J. 48:1181–1184.

    Article  CAS  Google Scholar 

  • Binkley, D. 1986. Forest nutrition management. Wiley, NY. 290 pp.

    Google Scholar 

  • Binkley, D, and P. Matson. 1983. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Sci. Soc. Am. J. 47:1050–1052.

    Article  CAS  Google Scholar 

  • Binkley, D, and P. Vitousek. 1989. Soil nutrient availability. In: R. Pearcy, H. Mooney, J. Ehleringer, and P. Rundel (eds.), Physiological plant ecology: Field methods and instrumentation. Chapman & Hall, London, pp. 75–96.

    Google Scholar 

  • Binkley, D., K. Cromack, Jr., and R.L. Fredriksen. 1982. Nitrogen accretion and availability in some snowbrush ecosystems. For. Sci. 28:720–724.

    Google Scholar 

  • Binkley, D, P. Sollins, and W. McGill. 1985. Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci. Soc. Am. J. 49:444–447.

    Article  CAS  Google Scholar 

  • Binkley, D, J. Aber, J. Pastor, and K. Nadelhoffer. 1986. Nitrogen availability in some Wisconsin forests: Comparisons of resin bags and on-site incubations. Biol, and Fert. of Soils 2:77–82.

    Google Scholar 

  • Binkley, D., P. Sollins, R. Bell, D. Sachs, and C. Glassman. In review. Biogeochemistry of adjacent conifer and alder/conifer ecosystems. Submitted to Ecology.

    Google Scholar 

  • Birch, H.F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil 10:9–31.

    Article  CAS  Google Scholar 

  • Birch, H.F. 1960. Nitrification in soils after different periods of dryness. Plant and Soil 12:81–96.

    Article  CAS  Google Scholar 

  • Bloss, S., and D. Binkley. In review. Effect of rooting by wild boars on nitrogen mineralization in high elevation beech forests of the southern Appalachians. Submitted to Can. J. For. Res.

    Google Scholar 

  • Bonde, T. A., and T. Rosswall. 1987. Seasonal variation of potentially mineralizable nitrogen in four cropping systems. Soil Sci. Soc. Am. J. 51:1508–1514.

    Article  Google Scholar 

  • Bremner, J. 1965. Nitrogen availability index. In. C. Black (ed.), Methods of soil analysis, part 2. Am. Soc. Agron., Madison, WI, pp. 1324–1345.

    Google Scholar 

  • Bremner, I, and C. Mulvaney. 1982. Nitrogen-total. In: A. Page, R. Miller, and D. Keeney (eds.), Methods of soil analysis, part 2, chemical and microbiological properties. Am Soc. Agron., Madison, WI, pp. 595–624.

    Google Scholar 

  • Brookes, P.C., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17:837–842.

    Article  CAS  Google Scholar 

  • Burger, J., and W. Pritchett. 1984. Effects of clearfelling and site preparation on nitrogen mineralization in a Southern pine stand. Soil Sci. Soc. Am. J. 48:1432–1437.

    Article  CAS  Google Scholar 

  • Carter, M.R. 1986. Microbial biomass and mineralizable nitrogen in solonetzic soils: Influence of gypsum and lime amendments. Soil Biol. Biochem. 18:531–537.

    Article  CAS  Google Scholar 

  • Carter, M.R., and J.A. Macleod. 1987. Biological properties of some Prince Edward Island soils: Relationship between microbial biomass nitrogen and mineralizable nitrogen. Can. J. Soil Sci. 67:333–340.

    Article  CAS  Google Scholar 

  • Carter, M.R., and D.A. Rennie. 1982. Changes in soil quality under zero tillage farming systems: distribution of microbial biomass and mineralizable C and N potentials. Can. J. Soil Sci. 62:587–597.

    Article  CAS  Google Scholar 

  • Chapin, F.S.H. III, K. Van Cleve, and P. Vitousek. 1986. The nature of nutrient limitation in plant communities. Am. Naturalist 127:148–158.

    Google Scholar 

  • Christensen, N., and T. MacAller. 1985. Soil mineral nitrogen transformations during succession in the Piedmont of North Carolina. Soil Biol. Biochem. 17:675–681.

    Article  Google Scholar 

  • Covington, W., and S. Sackett. 1986. Effect of periodic burning on soil nitrogen concentrations in ponderosa pine. Soil Sci. Soc. Am. J. 50:452–457.

    Article  Google Scholar 

  • Deans, J.R., J. Molina, and C. Clapp. 1986. Models for predicting potentially mineralizable nitrogen and decomposition rate constants. Soil Sci. Soc. Am. J. 50:323–326.

    Article  CAS  Google Scholar 

  • Di Stefano, J. 1984. Nitrogen mineralization and non-symbiotic nitrogen fixation in an age sequence of slash pine plantations in north Florida. Ph.D. diss., Univ. of Florida, Gainesville, pp. 219.

    Google Scholar 

  • Di Stefano, J., and H. Gholz. 1986. A proposed use of ion exchange resin to measure nitrogen mineralization and nitrification in intact soil cores. Comm. Soil Sci. Plant Anal. 17:989–998.

    Article  Google Scholar 

  • Ellenberg, H. 1977. Stickstoff als Standortsfaktor, insbesondere für mitteleuropäische Pflanzengesellschaften. Oecologia Plantarum 12:1–22.

    CAS  Google Scholar 

  • Eno, C. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Am. Proc. 24:277–279.

    Article  CAS  Google Scholar 

  • Fahey, T.J., J. Yavitt, J. Pearson, and D Knight. 1985. The nitrogen cycle in lodgepole pine forests, southeastern Wyoming. Biogeochem. 1:257–275.

    Article  Google Scholar 

  • Federer, C.A. 1983. Nitrogen mineralization and nitrification: Depth variation in four New England forest soils. Soil Sci. Soc. Am. J. 47:1008–1014.

    Article  Google Scholar 

  • Feigin, A., D Kohl, G. Shearer, and B. Commoner. 1974. Variation in the natural nitrogen-15 abundance in nitrate mineralized during incubation of several Illinois soils. Soil Sci. Soc. Am. Proc. 38:90–95.

    Article  Google Scholar 

  • Fisher, R., and E. Stone. 1969. Increased availability of nitrogen and phosphorus in the root zone of conifers. Soil Sci. Soc. Am. Proc. 33:955–961.

    Article  CAS  Google Scholar 

  • Flanagan, P., and K. Van Cleve. 1983. Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13:795–817.

    Article  CAS  Google Scholar 

  • Foster, N., E. Beauchamp, and C. Corke. 1985. Immobilization of nitrogen-15 labelled urea in a jack pine forest floor. Soil Sci. Soc. Am. J. 49:448–452.

    Article  CAS  Google Scholar 

  • Fox, T., J. Burger, and R. Kreh. 1986. Effects of site preparation on nitrogen dynamics in the southern Piedmont. For. Ecol. Manage. 15:241–256.

    Article  Google Scholar 

  • Frazer, D, J. McColl, and R. Powers. In review. Mineralization of soil nitrogen in a managed, mixed-conifer forest in northern California. Submitted to Soil Sci. Soc. Am. J.

    Google Scholar 

  • Fyles, J.W., and W.B. McGill. 1987. Nitrogen mineralization in forest profiles from central Alberta. Can. J. For. Res. 17:242–249.

    Article  Google Scholar 

  • Geist, J.M. 1977. Nitrogen response relationship of some volcanic ash soils. Soil Sci. Soc. Am. J. 41:996–1000.

    Article  CAS  Google Scholar 

  • Gianello, C., and J. Bremner. 1986. Comparison of chemical methods of assessing potentially available organic nitrogen in soil. Comm. Soil Sci. Plant Anal. 17:215–236.

    Article  CAS  Google Scholar 

  • Gibson, D., I. Colquhoun, and P. Greig-Smith. 1985. A new method for measuring nutrient supply rates in soils using ion-exchange resins. In: A.H. Fitter (ed.), Ecological interactions in soils: Plants, microbes, and animals. Blackwell, Oxford, pp. 73–79.

    Google Scholar 

  • Gilliam, F., and D. Richter. 1985. Increases in extractable ions in infertile aquults caused by sample preparation. Soil Sci. Soc. Am. J. 49:1576–1578.

    Article  CAS  Google Scholar 

  • Glavac, V., and H. Koenies. 1978a. Mineralstickstoff-Gehalte und N-Nettomineralisation im Boden eines Fictenforstes und seines Kahlschlages wahrend der Vegetationsperiode 1977. Oecologia Plantarum 13:207–218.

    Google Scholar 

  • Glavac, V., and H. Koenies. 1978b. Vergleiche der N-Nettomineralisation in einem Sauerhumus-Buchenwald (Luzulo-Fagetum) und einem benachbarten Fictenforst am gleichen Standort vor und nach dem Kahlschlag. Oecologia Plantarum 13:219–226.

    Google Scholar 

  • Gordon, A., and K. Van Cleve. 1983. Seasonal patterns of nitrogen mineralization following harvesting in the white spruce forests of interior Alaska. In: R.W. Wein, R.R. Riewe, and I.R. Methven (eds.), Resources and dynamics of the boreal zone. Assoc. Can. Univ. North. Stud., Ottawa, pp. 119–130.

    Google Scholar 

  • Gordon, A., M. Tallas, and K. Van Cleve. 1987. Soil incubations in polyethylene bags: Effect of bag thickness and temperature on nitrogen transformations and CO2 permeability. Can. J. Soil Sci. 67:65–75.

    Article  CAS  Google Scholar 

  • Gosz, J.R., and C.S. White. 1986. Seasonal and annual variation in nitrogen mineralization and nitrification along an elevational gradient in New Mexico. Biogeochem. 2:281–297.

    Article  CAS  Google Scholar 

  • Harmer, R., and I. Alexander. 1985. Effects of root exclusion on nitrogen transformations and decomposition processes in spruce humus. In: A. Fitter (ed.), Ecological interactions in soil: Plants, microbes and animals. Blackwell, Oxford, pp. 267–277

    Google Scholar 

  • Harmer, R., and I. Alexander. 1986. The effect of starch amendment on nitrogen mineralisation from the forest floor beneath a range of conifers. Forestry 59:39–46.

    Article  Google Scholar 

  • Hart, S.C. 1988. Carbon and nitrogen accretion and dynamics in volcanic ash deposits from different subarctic habitats. Biol. Fert. Soils. In press.

    Google Scholar 

  • Hart, S.C, and D. Binkley. 1985. Correlations among indices of forest soil nutrient availability in fertilized and unfertilized loblolly pine plantations. Plant and Soil 85:11–21.

    Article  CAS  Google Scholar 

  • Hart, S.C, and M.K. Firestone. 1989. Evaluation of three in situ nitrogen availability assays. In press. Can. J. For. Res.

    Google Scholar 

  • Hart, S.C, and A.J. Gunther. In-situ estimate of annual net nitrogen mineralization and nitrification in a subarctic watershed. Oecologia. In review.

    Google Scholar 

  • Hart, S.C, D. Binkley, and R.G. Campbell. 1986. Predicting loblolly pine growth and growth response to fertilization. Soil Sci. Soc. Am. J. 50:230–233.

    Article  Google Scholar 

  • Hauck, R., and J. Bremner. 1976. Use of tracers for soil and fertilizer nitrogen research. Adv. Agron. 28:219–266.

    Article  Google Scholar 

  • Hedman, C., and D. Binkley. 1988. Canopy profiles of some Piedmont hardwood forests. Can. J. For. Res. 18:1090–1093.

    Article  Google Scholar 

  • Heilman, P.E., T.H. Dao, H.H. Cheng, S.R. Webster, and L. Christensen. 1982. Comparison of fall and spring applications of 15N-labeled urea to Douglas-fir: II. Fertilizer nitrogen recovery in trees and soil after 2 years. Soil Sci. Soc. Am. J. 46:1300–1304.

    Article  CAS  Google Scholar 

  • Jansson, S.L. 1958. Tracer studies on nitrogen transformations in soil with special attention to mineralization-immobilization relationships. Ann. Roy. Agr. Coll. Sweden 24:101–361.

    CAS  Google Scholar 

  • Jansson, S.L. 1971. Use of 15N in studies of soil nitrogen. In: A.D. McLaren and J. Skujins (eds.), Soil Biochemistry, vol. 2. Marcel Dekker, NY, pp. 129–166.

    Google Scholar 

  • Jansson, S.L., and J. Persson. 1982. Mineralization and immobilization of soil nitrogen. In: F.J. Stevenson (ed.), Nitrogen in Agricultural Soils. Am. Soc. Agron., Madison, WI, pp. 229–252.

    Google Scholar 

  • Jenkinson, D.S., and J.N. Ladd. 1981. Microbial biomass in soil: Measurement and turnover. In: E.A. Paul and J.N. Ladd (eds.), Soil Biochemistry, vol. 5. Marcel Dekker, NY, pp. 415–471.

    Google Scholar 

  • Jenkinson, D.S., and D.S. Powlson. 1976. The effects of biocidal treatments on metabolism in soil. V: A method for measuring soil biomass. Soil Biol. Biochem. 8:209–213.

    Article  CAS  Google Scholar 

  • Johnson, D.W., N.T. Edwards, and D.E. Todd. 1980. Nitrogen mineralization, immobilization, and nitrification following urea fertilization of a forest soil under field and laboratory conditions. Soil Sci. Soc. Am. J. 44:610–616.

    Article  CAS  Google Scholar 

  • Kadeba, O., and J. Boyle. 1978. Evaluation of phosphorus in forest soils: Comparison of phosphorus uptake, extraction method and soil properties. Plant and Soil 49:285–297.

    Article  CAS  Google Scholar 

  • Keeney, D. 1980. Prediction of soil nitrogen availability in forest ecosystems: A literature review. For. Sci. 26:159–171.

    Google Scholar 

  • Keeney, D. 1982. Nitrogen-availability indices. In: A. Page, R. Miller, and D. Keeney (eds.), Methods of soil analysis, part 2, chemical and microbiological properties. Am. Soc. Agron., Madison, WI, pp. 711–734.

    Google Scholar 

  • Keeney, D., and J. Bremner. 1966. A chemical index of soil nitrogen availability. Nature 211:892–893.

    Article  PubMed  CAS  Google Scholar 

  • Keeney, D., and D. Nelson. 1982. Nitrogen-inorganic forms. In: A. Page, R. Miller, and D. Keeney (eds.), Methods of soil analysis, part 2, chemical and microbiological properties. Am. Soc. Agron., Madison, WI, pp. 643–698.

    Google Scholar 

  • Kirkham, D., and W.V. Bartholomew. 1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci. Soc. Am. Proc. 18:33–34.

    Article  CAS  Google Scholar 

  • Kirkham, D., and W.V. Bartholomew. 1955. Equations for following nutrient transformations in soil, utilizing tracer data: II. Soil Sci. Soc. Am. Proc. 19:189–192.

    Article  CAS  Google Scholar 

  • Knowles, R. 1975. Interpretation of recent 15N studies of nitrogen in forest systems. In: B. Bernier and C.H. Winget (eds.), Forest soils and forest land management. Proc. of the 4th N. Am. For. Soil Conf., Laval Univ., Quebec. August 1973. Laval Univ. Press, pp. 53–65.

    Google Scholar 

  • Kohl, D., G. Shearer, and J. Harper. 1980. Estimates of N2 fixation based on differences in the natural abundance of 15N in nodulating and nonnodulating isolines of soybeans. Plant Physiol. 66:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, M. 1978. Stickstoffverhältnisse im Boden des Eichen-Zerreichen-Walkokosystems. Oecologia Plantarum 13:75–82.

    Google Scholar 

  • Krause, H., and D. Ramlal. 1987. In situ nutrient extraction by resin from forested, clearcut and site-prepared soil. Can. J. Soil Sci. 67:943–952.

    Article  Google Scholar 

  • Kutiel, P., and Z. Naveh. 1987. The effect of fire on nutrients in a pine forest soil. Plant and Soil 104:269–274.

    Article  CAS  Google Scholar 

  • Labrouse, L., W. Vidal, J.C. Tosca, and P.H. Berge. 1985. Transferts d’azote mineral dans les sols froids: Essai de tracage isotopique in situ. Soil Biol. Biochem. 17:683–689.

    Article  Google Scholar 

  • Lajtha, K. 1988. The use of ion-exchange resin bags for measuring nutrient availability in an arid ecosystem. Plant and Soil 105:105–111.

    Article  CAS  Google Scholar 

  • Lamb, D. 1975. Patterns of nitrogen mineralization in the forest floor of stands of Pinus radiata on different soils. J. Ecol. 63:615–625.

    Article  Google Scholar 

  • Lamb, D. 1980. Soil nitrogen mineralisation in a secondary rainforest succession. Oecologia (Berl.) 47:257–263.

    Article  Google Scholar 

  • Lea, R., and R. Ballard. 1982. Predicting loblolly pine growth response from N fertilizer, using soil-N availability indices. Soil Sci. Soc. Am. J. 46:1096–1099.

    Article  CAS  Google Scholar 

  • Lemée, G. 1967. Investigations sur la minéralisation de l’azote et son évolution annuelle dans des humus forestiers in situ. Oecologia Plantarum 2:285–324.

    Google Scholar 

  • Mahendrappa, M. 1980. Relationships between different estimates of mineralizable N in the organic materials under black spruce stands. Can. J. For. Res. 10:517–522.

    Article  CAS  Google Scholar 

  • Mahendrappa, J., N. Foster, G. Weetman, and H. Krause. 1986. Nutrient cycling and availability in forest soils. Can. J. Soil Sci. 66:547–572.

    Article  Google Scholar 

  • Maimone, R., L. Morris, and T. Fox. 1987. Nitrogen mineralization potential in a Lower Coastal Plain forest soil. Agron. Abstr. 1987:261.

    Google Scholar 

  • Marion, G., and C. Black. 1987. The effect of time and temperature on nitrogen mineralization in arctic tundra soils. Soil Sci. Soc. Am. J. 51:1501–1508.

    Article  CAS  Google Scholar 

  • Marumoto, T., H. Kai, T. Yoshida, and T. Harada. 1977a. Drying effect on mineralization of microbial cells and their cell walls in soil and contribution of microbial cell walls as a source of decomposable soil organic matter due to drying. Soil Sci. Plant Nutr. 23:9–19.

    CAS  Google Scholar 

  • Marumoto, T., H. Kai, T. Yoshida, and T. Harada. 1977b. Relationship between an accumulation of soil organic matter becoming decomposable due to drying of soil and microbial cells. Soil Sci. Plant Nutr. 23:1–8.

    CAS  Google Scholar 

  • Marumoto, T., J.P.E. Anderson, and K.H. Domsch. 1982a. Decomposition of 14C-and 15N-labelled microbial cells in soil. Soil Biol. Biochem. 14:461–467.

    Article  CAS  Google Scholar 

  • Marumoto, T., J.P.E. Anderson, and K.H. Domsch. 1982b. Mineralization of nutrients from soil microbial biomass. Soil Biol. Biochem. 14:469–475.

    Article  CAS  Google Scholar 

  • Matson, P., and R. Boone. 1984. Natural disturbance and nitrogen mineralization: Wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology 65:1511–1516.

    Article  Google Scholar 

  • Matson, P., and P. Vitousek. 1981. Nitrogen mineralization and nitrification potentials following clearcutting in the Hoosier National Forest, Indiana. For. Sci. 27:781–791.

    Google Scholar 

  • Matson, P., P. Vitousek, J. Ewel, M. Mazzarino, and P. Robertson. 1987. Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68:491–502.

    Article  Google Scholar 

  • McNabb, D.H. 1984. Handling and storage of soil samples. In: Nitrogen Assessment Workshop, Regional Forest Nutrition Research Project Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, pp. 32–34.

    Google Scholar 

  • Mead, D., and W. Pritchett. 1971. A comparison of tree response to fertilizers in field and pot experiments. Soil Sci. Soc. Am. Proc. 35:246–349.

    Article  Google Scholar 

  • Mead, D.J., and W.L. Pritchett. 1975. Fertilizer movement in a slash pine ecosystem. II. N distribution after two growing seasons. Plant and Soil 43:467–478.

    Article  Google Scholar 

  • Melillo, J. 1977. Mineralization of nitrogen in northern forest ecosystems. Ph.D. diss., Yale Univ. Diss. Abstr. 38:3026–B.

    Google Scholar 

  • Melillo, J. 1981. Nitrogen cycling in deciduous forests. In: F. Clark, and T. Rosswall (eds.), Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33:427–442.

    Google Scholar 

  • Melin, J., H. Nommik, U. Lohm, and J. Flower-Ellis. 1983. Fertilizer nitrogen budget in a Scots pine ecosystem attained by using root-isolated plots and 15N tracer technique. Plant and Soil 74:249–263.

    Article  CAS  Google Scholar 

  • Miller, H., J. Cooper, and J. Miller. 1976. Effect of nitrogen supply on nutrient uptake in a stand of Corsican pine. J. Appl. Ecol. 13:955–966.

    Article  CAS  Google Scholar 

  • Mladenoff, D. 1987. Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68:1171–1180.

    Article  Google Scholar 

  • Montagnini, F., B. Haines, L. Boring, and W. Swank. 1986. Nitrification potentials in early successional black locusts and in mixed hardwood forest stands in the southern Appalachians, USA. Biogeochem. 2:197–210.

    Article  CAS  Google Scholar 

  • Myrold, D.D. 1987. Relationship between microbial biomass nitrogen and a nitrogen availability index. Soil Sci. Soc. Am. J. 51:1047–1049.

    Article  Google Scholar 

  • Myrold, D.D., J.M. Tiedje. 1986. Simultaneous estimation of several nitrogen cycle rates using 1 5N: Theory and application. Soil Biol. Biochem. 18:559–568.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K., J. Aber, and J. Melillo. 1983. Leaf-litter production and soil organic matter dynamics along a nitrogen-availability gradient in Southern Wisconsin (U.S.A.).Can. J. For. Res. 13:12–21.

    Article  Google Scholar 

  • Németh, K., I. Makhdum, K. Koch, and H. Beringer. 1979. Determination of categories of soil nitrogen by electro-ultrafiltration (EUF). Plant and Soil 53:445–453.

    Article  Google Scholar 

  • Nishio, T, T. Kanamori, and T. Fujimoto. 1985. Nitrogen transformation in aerobic soil as determined by a 15NH4 + dilution technique. Soil Biol. Biochem. 17:149–154.

    Article  CAS  Google Scholar 

  • Nordmeyer, H., and J. Richter. 1985. Incubation experiments on nitrogen mineralization in loess and sandy soils. Plant and Soil 83:443–445.

    Article  Google Scholar 

  • Olson, R., and W. Reiners. 1983. Nitrification in subalpine balsam fir soils: Tests for inhibitory factors. Soil Biol. Biochem. 15:413–418.

    Article  CAS  Google Scholar 

  • Pastor, J., and W.M. Post. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochem 2:3–27.

    Article  Google Scholar 

  • Pastor, J., and W.M. Post. 1988. Response of northern forests to CO2-induced climate change. Nature. In press.

    Google Scholar 

  • Pastor, J., M.A. Stillwell, and D. Tilman. 1987a. Nitrogen mineralization and nitrification in four Minnesota old fields. Oecologia 71:481–485.

    Article  Google Scholar 

  • Pastor, I, J. Aber, C. McClaugherty, and J. Melillo. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268.

    Article  CAS  Google Scholar 

  • Pastor, J., R. Garner, V. Dale, and W. Post. 1987b. Successional changes in nitrogen availability as a potential factor contributing to spruce declines in boreal North America. Can. J. For. Res. 17:1394–1400.

    Article  Google Scholar 

  • Paul, E.A., and N.G. Juma. 1981. Mineralization and immobilization of soil nitrogen by microorganisms. In: E.E. Clark and T. Rosswall (eds.), Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm), 33:179–195.

    Google Scholar 

  • Paul, E.A., J.L. Smith, and J.M. Norton. 1986. The decomposition of 14C-and 15N-labeled cells in soil under anaerobic conditions. Agron. Abst. 1986:186.

    Google Scholar 

  • Peterson, B., and B. Fry. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18:293–320.

    Article  Google Scholar 

  • Peterson, C., P. Ryan, and S. Gessel. 1984. Response of Northwest Douglas-fir stands to urea: Correlations with forest soil properties. Soil Sci. Soc. Am. J. 48:162–169.

    Article  CAS  Google Scholar 

  • Pfadenhauer, J. 1979. Die Stickstoffmineralisation in Böden subtropischer Regenwälder in Südbrasilien. Oecologia Plantarum 14:27–40.

    Google Scholar 

  • Poovarodom, S., R. Tate, and R. Bloom. 1988. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey pinelands: Field rates. Soil Science 145:257–263.

    Article  Google Scholar 

  • Post, W.M., J. Pastor, P. Zinke, and A. Stangenberger. 1985. Global patterns of soil nitrogen storage. Nature 317:613–616.

    Article  Google Scholar 

  • Powers, R. 1980. Mineralizable soil nitrogen as an index of nitrogen availability to forest trees. Soil Sci. Soc. Am. J. 44:1314–1320.

    Article  Google Scholar 

  • Powers, R. 1984a. Estimating soil nitrogen availability through soil and foliar analysis. In: E. Stone (ed.), Forest soils and treatment impacts. Proc. of the 6th N. Am. For. Soils Conf. Univ. of Tennessee, Knoxville, August 1983, pp 353–379.

    Google Scholar 

  • Powers, R.F. 1984b. Site productivity and soil nitrogen status. In: Nitrogen assessment workshop, Regional Forest Nutrition Research Project Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, pp. 60–68.

    Google Scholar 

  • Powers, R.F. 1984c. Sources of variation in mineralizable soil nitrogen. In: Nitrogen assessment workshop, Regional Forest Nutrition Research Project Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, pp. 25–31.

    Google Scholar 

  • Powers, R. 1987. Soil nitrogen mineralization along an altitudinal gradient: Influence of soil temperature and moisture. Presented in IUFRO Conf. on Management of Water and Nutrient Relations to Increase Forest Growth, Canberra, ACT, October 19–22, 1987.

    Google Scholar 

  • Radwan, M., and J. Shumway. 1983. Soil nitrogen, sulfur, and phosphorus in relation to growth response of western hemlock to nitrogen fertilization. For. Sci. 29:469–477.

    Google Scholar 

  • Raison, R., M. Connell, and P. Khanna. 1987a. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19:521–530.

    Article  CAS  Google Scholar 

  • Raison, R., P. Khanna, M. Connell, and R. Falkiner. 1987b. Effects of water supply and fertilization on N cycling in a stand of Pinus radiata. Presented at IUFRO Conf. on Management of Water and Nutrient Relations to Increase Forest Growth, Canberra, ACT, October 19–22, 1987.

    Google Scholar 

  • Rapp, M., M. Leclerc, and P. Lossaint. 1979. The nitrogen economy in a Pinus pinea L. stand. For. Ecol. Manage. 2:221–231.

    Article  CAS  Google Scholar 

  • Rashid, G. 1987. Effects of fire on soil carbon and nitrogen in a Mediterranean oak forest of Algeria. Plant and Soil 103:89–93.

    Article  Google Scholar 

  • Rescigno, A., and G. Segre. 1966. Drug and Tracer Kinetics. Blaisdell, Waltham, MS, 209 pp.

    Google Scholar 

  • Rice, E., and S. Pancholy. 1972. Inhibition of nitrification by climax ecosystems. Am. J. Bot. 59:1033–1040.

    Article  Google Scholar 

  • Robertson, G.P. 1987. Geostatistics in ecology: Interpolating with known variance. Ecology 68:744–748.

    Article  Google Scholar 

  • Robertson, G.P., and P. Vitousek. 1981. Nitrification potentials in primary and secondary succession. Ecology 62:376–386.

    Article  Google Scholar 

  • Robertson, G.P, M.A. Houston, F.C. Evans, and J.M. Tiedje. 1988. Spatial variability in a successional plant community: Patterns of nitrogen availability. Ecology 69:1517–1524.

    Article  Google Scholar 

  • Runge, M. 1971. Investigations of the content and the production of mineral nitrogen in soils. In: H. Ellenberg (ed.), Integrated experimental ecology: Methods and results of ecosystem research in the German Soiling Project. Springer-Verlag, NY, pp. 191–202.

    Google Scholar 

  • Runge, M. 1974. Die Stickstoff-Mineralisation im Boden eines Sauerhumus-Buchenwaldes. I. Mineralstickstoff-Gehalt und Netto-Mineralisation. Oceologia Plantarum 9:201–218.

    Google Scholar 

  • Ryan, M., and W. Covington. 1986. Effect of a prescribed burn in ponderosa pine on inorganic nitrogen concentrations of mineral soil. USDA For. Ser. Res. Note RM-464, Ft. Collins, CO

    Google Scholar 

  • Safford, L. 1982. Correlation of greenhouse bioassay with field response to fertilizer by paper birch. Plant and Soil 64:167–176.

    Article  Google Scholar 

  • Sahrawat, K.L. 1980. Soil and fertilizer nitrogen transformations under alternate flooding and drying moisture regimes. Plant and Soil 55:225–233.

    Article  CAS  Google Scholar 

  • Sasser, C., and D. Binkley. 1988. Nitrogen mineralization in high elevation forests of the Appalachians. II. Patterns with stand development in fir waves. Biogeochem. in press.

    Google Scholar 

  • Satterson, K. 1985. Nitrogen availability, primary production, and nutrient cycling during secondary succession in North Carolina Piedmont forests. Ph.D. diss., Univ. of North Carolina, Chapel Hill, pp. 57–59.

    Google Scholar 

  • Scarsbrook, C.E. 1965. Nitrogen availability. In: W.V. Bartholomew and F.E. Clark (eds.), Soil nitrogen agronomy, Am. Soc. Agron., Madison, WI, 10:481–502.

    Google Scholar 

  • Schimel, D.S., and G. Innis. 1986. Quantification of nitrogen turnover: Models of isotope dilution in soils. Ecol Soc. Am. Abst. 1986:300.

    Google Scholar 

  • Schimel, J.P. 1987. Plant/microbial competition for nitrogen in California forest and grassland. Ph.D. diss., Univ. of California, Berkeley, 156 pp.

    Google Scholar 

  • Seneviratne, R., and A. Wild. 1985. Effect of mild drying on the mineralization of soil nitrogen. Plant and Soil 84:175–179.

    Article  CAS  Google Scholar 

  • Shen, S.M., G. Pruden, and D.S. Jenkinson. 1984. Mineralization and immobilization of nitrogen infumigated soil and the measurement of microbial biomass nitrogen. Soil Biol. Biochem. 16:437–444.

    Article  CAS  Google Scholar 

  • Shipley, R.A., and R.E. Clark. 1972. Tracer methods for in vivo kinetics. Academic Press, NY, 239 pp.

    Google Scholar 

  • Shumway, J. 1984. Total nitrogen, mineralizable nitrogen and site index as guides to fertilization of Douglas-fir. In: Nitrogen assessment workshop, May 19–20, 1982, RFNRP Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, p. 57–59.

    Google Scholar 

  • Shumway, J., and W.A. Atkinson. 1978. Predicting nitrogen fertilizer response in unthinned stands of Douglas-fir. Comm. Soil Sci. Plant Anal. 9:529–539.

    Article  CAS  Google Scholar 

  • Sibbeson, E. 1977. A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant and Soil 46:665–669.

    Article  Google Scholar 

  • Smith, J.L., J. Norton, E.A. Paul. 1985. Microbial biomass estimations. In: J.L. Smith and E.A. Paul (eds.), Process controls and nitrogen transformations in terrestrial ecosystems, Dept. of Plant and Soil Biology, Univ. of California, Berkeley, pp. 94–108.

    Google Scholar 

  • Smith, J.L., B.L. McNeal, E.J. Owens, and G.O. Klock. 1981. Comparison of nitrogen mineralized under anaerobic and aerobic conditions for some agricultural and forest soils of Washington. Comm. Soil Sci. Plant. Anal. 12:997–1009.

    Article  Google Scholar 

  • Sollins, P., G. Sphycher, and C.A. Glassman. 1984. Net nitrogen mineralization from light-and heavy-fraction forest soil organic matter. Soil Biol. Biochem. 16:31–37.

    Article  CAS  Google Scholar 

  • Sparling, G.P., and D.J. Ross. 1988. Microbial contributions to increased nitrogen mineralization after air-drying of soils. Plant and Soil 105:163–167.

    Article  CAS  Google Scholar 

  • Stanford, G, and W. Demar. 1969. Extraction of soil organic nitrogen by autoclaving in water: I. The NaOH-distillable fraction as an index of nitrogen availability in soils. Soil Sci. 107:203–205.

    Article  CAS  Google Scholar 

  • Stanford, G, and E. Epstein. 1974. Nitrogen mineralization-water relations in soils. Soil Sci. Soc. Am. Proc. 38:103–107.

    Article  Google Scholar 

  • Stanford, G, and S. Smith. 1972. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36:465–472.

    Article  CAS  Google Scholar 

  • Stanford, G, J. Carter, and S. Smith. 1974. Estimates of potentially mineralizable soil nitrogen based on short-term incubations. Soil Sci. Soc. Am. Proc. 38:99–103.

    Article  Google Scholar 

  • Strader, R., D. Binkley, and C. Wells. 1988. Nitrogen mineralization in high elevation forests of the Appalachians. I. Regional patterns in southern spruce-fir forests. Biogeochem. in press.

    Google Scholar 

  • Talpaz, H., P. Fine, and B. Bar-Yosef. 1981. On the estimation of N-mineralization parameters from incubation experiments. Soil Sci. Soc. Am. J. 45:993–996.

    Article  CAS  Google Scholar 

  • Thorne, J., and S. Hamburg. 1985. Nitrification potentials of an old-field chronosequence in Campton, New Hampshire. Ecology 66:1333–1338.

    Article  Google Scholar 

  • Thorne, J., A. Friedland, E. Miller, and J. Battles. 1987. Nitrification and nitrogen mineralization in an Adirondack spruce-fir sere. Bull. Ecol. Soc. Am. 68:429.

    Google Scholar 

  • Turner, D.P., and E.H. Franz. 1985. The influence of western hemlock and western redcedar on microbial numbers, nitrogen mineralization, and nitrification. Plant and Soil 88:259–267.

    Article  Google Scholar 

  • Van Cleve, K., and R. White. 1980. Forest-floor nitrogen dynamics in a 60-year-old paper birch ecosystem in interior Alaska. Plant and Soil 54:359–381.

    Article  Google Scholar 

  • Van Praag, H., and F. Weissen. 1973. Elements of a functional definition of oligotroph humus based on the nitrogen nutrition of forest stands. J. Appl. Ecol. 10:569–583.

    Article  Google Scholar 

  • Van Schreven, D.A. 1967. The effect of intermittent drying and wetting of a calcareous soil on carbon and nitrogen mineralization. Plant and Soil 26:14–32.

    Article  Google Scholar 

  • Virzo De Santo, A., Al Alfani, and A. Fioretto. 1982. Nitrogen mineralization in southern beech forests. Pedobiologica 23:348–357.

    CAS  Google Scholar 

  • Vitousek, P. 1982. Nutrient cycling and nutrient use efficiency. Am. Naturalist 119:553–572.

    Article  Google Scholar 

  • Vitousek, P.M., and S.W Andraiese. 1986. Microbial transformations of labelled nitrogen in a clear-cut pine plantation. Oecologia (Berl.) 68:601–605.

    Article  Google Scholar 

  • Vitousek, P., and P. Matson. 1985. Disturbance, nitrogen availability, and nitrogen losses in an intensively managed loblolly pine plantation. Ecology 66:1360–1376.

    Article  Google Scholar 

  • Vitousek, P.M., J.R. Gosz, C.C. Grier, J.M. Melillo, and W.A. Reiners. 1982. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol. Monogr. 52:155–177.

    Article  CAS  Google Scholar 

  • Vogt, K., C. Grier, and D. Vogt. 1986. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advan. Ecol. Res. 14:303–337.

    Article  Google Scholar 

  • Voroney, R.P., and E.A. Paul. 1984. Determination of k C and k N in situ for calibration of the chloroform fumigation-incubation method. Soil Biol. Biochem. 16:9–14.

    Article  CAS  Google Scholar 

  • Waring, R.H., K. Cromack, Jr., P. Matson, R. Boone, and S. Stafford. 1987. Responses to pathogen-induced disturbance: Decomposition, nutrient availability, and tree vigour. Forestry 60:219–227.

    Article  Google Scholar 

  • Waring, S. A., and J.M. Bremner. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951–952.

    Article  CAS  Google Scholar 

  • Weber, M.G., and K. Van Cleve. 1984. Nitrogen transformations in feather moss and forest floor layers of interior Alaska black spruce ecosystems. Can. J. For. Res. 14:278–290.

    Article  Google Scholar 

  • Webster, R. 1985. Quantitative spatial analysis of soil in the field. Advan. Soil Sci. 3:1–70.

    Article  Google Scholar 

  • Webster, S. 1984. Comparison of available nitrogen procedures for Douglas-fir (Pseudotsuga menziesii) soils. In: Nitrogen assessment workshop, May 19–20, 1982, RFNRP Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, p. 41.

    Google Scholar 

  • Youngberg, C. 1978. Nitrogen mineralization and uptake from Douglas-fir forest floors. Soil Sci. Soc. Am. J. 42:499–502.

    Article  CAS  Google Scholar 

  • Zöttl, H. 1960. Dynamikder Stickstoffmineralisation im organishen Waldbodenmaterial. II. Einfluss des stickstoffgehaltes auf die Mineralstickstoff-nachlieferung. Plant and Soil 13:183–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Binkley, D., Hart, S.C. (1989). The Components of Nitrogen Availability Assessments in Forest Soils. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8847-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8847-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8849-4

  • Online ISBN: 978-1-4613-8847-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics