Skip to main content
Log in

Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Marisma, one of the largest salt-marsh alluvial areas in SW Spain, has been reclaimed since 1970 by artificial drainage and amendment with phosphogypsum (PG) so as to reduce Na+ saturation. Within the reclaimed area, two 250- × 20-m plots were treated as follows: (1) amendment with 25 Mg/ha of PG every 2 to 3 years between 1979 and 2003 (plot PY); (2) like PY but PG treatment stopped after 1997 (plot DR). A contiguous virgin Marisma salt-marsh plot (MV), neither drained nor amended, was the control. In MV, soil microbial biomass C, most enzyme activities and total organic C content were much greater than in PY and DR soils, despite the salinity stress. The decrease in soil organic matter content in PY and DR soils was likely due to cotton-cropping practices, which favoured the organic C mineralisation and nutrients removal by crops. Microbial activity of MV soil, probably stimulated by the rhizodepositions of the natural vegetation, did not suffer from the osmotic effect due to the raising of soil solution ionic strength. Microbial quotient could be ranked as MV > PY > DR, whereas the metabolic quotient had an opposite trend. Thus, both quotients suggested that the interruption of PG amendment was not favouring microbial activity. Principal component analysis clearly identified the chemical and biochemical soil properties mostly affected by the reclamation and also indicated the longer PG amendment in PY plot. Stepwise discriminant analysis identified two physiologically different types of soil microflora, one less active present in the MV virgin soil and another more active present in the reclaimed PY and DR soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Eishah SI, Bani-Kananeh AA, Allawzi MA (2000) K2SO4 production via the double decomposition reaction of KCl and phosphogypsum. Chem Eng J 76:197–207. doi:10.1016/S1385-8947(99)00158-8

    Article  CAS  Google Scholar 

  • Acosta-Martinez V, Acosta-Mercado D, Sotomayor-Ramirez D, Cruz-Rodriguez L (2008) Microbial communities and enzymatic activities under different management in semiarid soils. Appl Soil Ecol 38:249–260. doi:10.1016/j.apsoil.2007.10.012

    Article  Google Scholar 

  • Agassi M, Shainberg I, Morin J (1984) Effect of powered phosphogypsum on the infiltration rate of sodic soils. Irrig Sci 7:53–61

    Google Scholar 

  • Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agric Ecosyst Environ 98:285–293. doi:10.1016/S0167-8809(03)00088-4

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1985) Determination of ecophysiological maintenance requirements of soil microorganism in a dormant state. Biol Fertil Soils 1:81–89. doi:10.1007/BF00255134

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255. doi:10.1016/0038-0717(90)90094-G

    Article  Google Scholar 

  • David R, Dimitrios P (2002) Diffusion and cation exchange during the reclamation of saline-structured soils. Geoderma 107:271–279. doi:10.1016/S0016-7061(01)00152-5

    Article  CAS  Google Scholar 

  • Delgado A, Hurtado MD, Andreu L (2006) Phosphorus loss in tile drains from a reclaimed marsh soil amended with manure and phosphogypsum. Nutr Cycl Agroecosyst 74:191–202. doi:10.1007/s10705-005-6240-x

    Article  Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, New York, pp 121–156

    Google Scholar 

  • Domínguez R, del Campillo C, Peña F, Delgado A (2001) Effect of soil properties and reclamation practices on phosphorus dynamics in reclaimed calcareous marsh soils from the Guadalquivir Valley, SW Spain. Arid Land Res Manag 15:203–221. doi:10.1080/15324980152119775

    Article  Google Scholar 

  • Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44:765–771

    CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172. doi:10.1016/0038-0717(77)90070-0

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606. doi:10.1016/0038-0717(88)90141-1

    Article  CAS  Google Scholar 

  • Elliott LF, Lynch JM, Papendick RI (1996) The microbial component of soil quality. In: Stotzky G, Bollag JM (eds) Soil biochemistry. Marcel Dekker, New York, pp 1–21

    Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agric Ecosyst Environ 88:169–174. doi:10.1016/S0167-8809(01)00254-7

    Article  Google Scholar 

  • Frankenberger WT Jr, Bingham FT (1982) Influence of salinity on soil enzyme activities. Soil Sci Soc Am J 46:1173–1177

    CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–278. doi:10.1016/S0065-2911(08)60148-4

    Article  CAS  Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthid soil. Plant Soil 178:255–263. doi:10.1007/BF00011591

    Article  CAS  Google Scholar 

  • Garcia C, Hernandez T, Pascual JA, Moreno JL, Ros M (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes. Strategies for their rehabilitation. In: Garcia C, Hernandez MT (eds) Research and perspectives of soil enzymology in Spain. CEBAS-CSIC, Spain, pp 93–143

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. ASA and SSSA, Madison, WI, pp 383–411

    Google Scholar 

  • Gee GW, Or D (2002) Particle-size analysis. In: Dane JH, Topp GC (eds) Methods of soil analysis. SSSA, Madison, WI, pp 255–293

    Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385

    CAS  Google Scholar 

  • Gupta RK, Abrol IP (1990) Salt-affected soils: their reclamation and management for crop production. Adv Soil Sci 11:223–288

    Google Scholar 

  • Gutiérrez Boem FH, Lavado RS (1996) The effects of soil sodicity on the emergence, growth, development and yield of oilseed rape (Brassica napus). J Agric Sci 126:169–173. doi:10.1017/S002185960007310X

    Article  Google Scholar 

  • Hodkinson RA, Thorburn AA (1995) Factors influencing the stability of salt affected soils in the UK—criteria for identifying appropriate management options. Agric Water Manag 29:327–338. doi:10.1016/0378-3774(95)01167-6

    Article  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72. doi:10.1007/BF00257924

    Article  CAS  Google Scholar 

  • Keren R, Shainberg I (1981) Effect of dissolution rate on the efficiency of industrial and mined gypsum in improving infiltration of a sodic soil. Soil Sci Soc Am J 45:103–107

    Article  CAS  Google Scholar 

  • Landi L, Renella G, Moreno JL, Falchini L, Nannipieri P (2000) Influence of cadmium on the metabolic quotient, L-:D-glutamic acid respiration ration and enzyme activity: microbial biomass ratio under laboratory conditions. Biol Fertil Soils 32:8–16. doi:10.1007/s003740000205

    Article  CAS  Google Scholar 

  • Luna-Guido ML, Beltran-Hernandez RI, Solis-Ceballos NA, Hernandez-Chavez N, Mercado-Garcia F, Catt JA, Olalde-Portugal V, Dendoven L (2000) Chemical and biological characteristics of alkaline saline soils from the former lake Texoco as affected by artificial drainage. Biol Fertil Soils 32:102–108. doi:10.1007/s003740000223

    Article  CAS  Google Scholar 

  • Mehlich A (1953) Rapid determination of cation and anion exchange properties and pH of soils. J Assoc Off Agric Chem 36:445–457

    CAS  Google Scholar 

  • Ministero delle Politiche Agricole e Forestali (1999) Metodi ufficiali di analisi chimica del suolo. Decreto Ministeriale 13 settembre 1999. In: Supplemento ordinario alla Gazzetta Ufficiale no. 248 del 21 Ottobre 1999

  • Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108

    PubMed  CAS  Google Scholar 

  • Moreno F, Cabrera F, Andreu L, Vaz R, Martín-Aranda J, Vachaud G (1995) Water movement and salt leaching in drained and irrigated marsh soils of southwest Spain. Agric Water Manag 27:25–44. doi:10.1016/0378-3774(95)01128-6

    Article  Google Scholar 

  • Moreno F, Cabrera F, Fernández-Boy E, Girón IF, Fernández JE, Bellido B (2001) Irrigation with saline water in the reclaimed marsh soils of south-west Spain: impact of soil properties and cotton and sugar beet crops. Agric Water Manag 48:133–150. doi:10.1016/S0378-3774(00)00120-7

    Article  Google Scholar 

  • Nannipieri P (1994) The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO Australia, Victoria, pp 238–244

    Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol. 6. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. doi:10.1046/j.1351-0754.2003.0556.x

    Article  Google Scholar 

  • Oster JD (1982) Gypsum usage in irrigated agriculture: a review. Fertil Res 3:73–89. doi:10.1007/BF01063410

    Article  CAS  Google Scholar 

  • Palma RM, Arrigo NM, Saubidet MI, Conti ME (2000) Chemical and biochemical properties as potential indicators of disturbances. Biol Fertil Soils 32:381–384. doi:10.1007/s003740000266

    Article  CAS  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2001) Use of saline-sodic waters through phytoremediation of calcareous saline-sodic soils. Agric Water Manag 50:197–210. doi:10.1016/S0378-3774(01)00101-9

    Article  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854. doi:10.1016/S0038-0717(03)00125-1

    Article  CAS  Google Scholar 

  • Sharma S (1996) Applied multivariate techniques. Wiley, New York

    Google Scholar 

  • Skujins JJ (1967) Enzymes in soil. In: McLaren AD, Petersen GH (eds) Soil biochemistry, vol. I. Marcel Dekker, New York, pp 371–414

    Google Scholar 

  • Speir TW, Ross DJ (2002) Hydrolytic enzyme activities to assess soil degradation and recovery. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity ecology and applications. Marcel Dekker, New York, pp 407–431

    Google Scholar 

  • SPSS for windows (1996) SPSS Inc., Chicago, IL

  • Tabatabai MA (1982) Soil enzymes. In: Page AL (ed) Methods of soil analysis, Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, WI, pp 903–943

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulphatase activity of soils. Soil Sci Soc Am Proc 34:427–429

    Article  CAS  Google Scholar 

  • Tejada M, Garcia C, Gonzales JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Thalmann A (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivitat im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258

    CAS  Google Scholar 

  • Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K, Bandyapadhyay BK (2006) Microbial biomass and its activities in salt affected coastal soils. Biol Fertil Soils 42:273–277

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial quotient (qCO2) as a bio-indicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    Article  CAS  Google Scholar 

  • Williams DE (1948) A rapid manometer method for the determination of carbonate in soils. Soil Sci Soc Am Proc 13:127–129

    Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fertil Soils 44:943–953

    Article  Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils 25:211–223

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank the Editor-in-Chief and two anonymous reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Badalucco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laudicina, V.A., Hurtado, M.D., Badalucco, L. et al. Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biol Fertil Soils 45, 691–700 (2009). https://doi.org/10.1007/s00374-009-0380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0380-0

Keywords

Navigation