Skip to main content

Diversity and Ecology of Thraustochytrid Protists in the Marine Environment

  • Chapter
Marine Protists

Abstract

Thraustochytrids are heterotrophic estuarine/marine protists belonging to the class Labyrinthulomycetes within the stramenopile lineage. Thraustochytrid protists have been a neglected agent of the microbial food chain; however, they occur in detectable amounts in seawater, sediment, and algal and animal tissues. They have the ability to degrade a wide variety of organic substrates, including refractory substrates, by means of extracellular enzymes. Their wide distribution and degradation capability exhibit their ecological significance as decomposers. In particular, thraustochytrids may grow on terrestrial refractory matter in riverine input, and play a role in enhancing carbon cycling in estuarine and coastal areas. Additionally, they produce high amounts of long-chain polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA), which are essential fatty acids for marine animals. Furthermore, some members are known to be pathogens of marine mollusks. These distinctive characteristics mean that thraustochytrid protists play a number of important roles in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson OR, Cavalier-Smith T (2012) Ultrastructure of Diplophrys parva, a new small freshwater species, and a revised analysis of Labyrinthulea (Heterokonta). Acta Protozool 51:291–304

    Google Scholar 

  • Bahnweg G (1979) Studies on the physiology of Thraustochytriales. I. Carbon nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp. and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerh 17:269–273

    CAS  Google Scholar 

  • Bahnweg G, Jäckle I (1986) A new approach to taxonomy of the Thraustochytriales and Labyrinthulales. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 131–140

    Google Scholar 

  • Bongiorni L (2012) Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Bongiorni L, Dini F (2002) Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aquat Microb Ecol 30:49–56

    Article  Google Scholar 

  • Bongiorni L, Mirto S, Pusceddu A, Danovaro R (2005a) Response of benthic protozoa and thraustochytrid protists to fish-farm impact in seagrass (Posidonia oceanica) and soft bottom sediments. Microb Ecol 50:268–276

    Article  CAS  PubMed  Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005b) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  • Bremer GB (1976) The ecology of marine lower fungi. In: Jones EBG (ed) Advances in aquatic mycology. Elek Science, London, pp 313–333

    Google Scholar 

  • Bremer GB (1995) Lower marine fungi (Labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia 295:89–95

    Article  Google Scholar 

  • Brothers C, Marks E III, Smolowitz R (2000) Conditions affecting the growth and zoosporulation of the protistan parasite QPX in culture. Biol Bull 199:200–201

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EE (2005) Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista). J Mol Evol 62:388–420

    Article  Google Scholar 

  • Cavalier-Smith T, Allsopp M, Chao EE (1994) Thraustochytrids are chromist not fungi: signature sequences of heterokonta. Philos Trans R Soc Lond B 346:387–397

    Article  CAS  Google Scholar 

  • Chamberlain AHL, Moss ST (1988) The thraustochytrids: a protist group with mixed affinities. BioSyst 21:341–349

    Article  CAS  Google Scholar 

  • Cienkowski L (1867) Über den Bau und die Entwickelung der Labyrinthuleen. Arch Mikrosk Anat 3:274–310

    Article  Google Scholar 

  • Coleman NY, Vestal JR (1987) An epifluorescent microscopy study of enzymatic hydrolysis of fluorescein diacetate associated with the ectoplasmic net elements of the protist Thraustochytrium striatum. Can J Microbiol 33:841–843

    Article  CAS  Google Scholar 

  • Collado-Mercado E, Radway JC, Collier JL (2010) Novel uncultivated labyrinthulomycetes revealed by 18S rDNA sequences from seawater and sediment samples. Aquat Microb Ecol 58:215–228

    Article  Google Scholar 

  • Damare V, Raghukumar S (2010) Association of the stramenopilan protists, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Mar Ecol Prog Ser 399:53–68

    Article  CAS  Google Scholar 

  • Darley WM, Porter D, Fuller MS (1973) Cell wall composition and synthesis via Golgi-directed scale formation in the marine eukaryote, Schizochytrium aggregatum, with a note on Thraustochytrium sp. Arch Mikrobiol 90:89–106

    Article  CAS  PubMed  Google Scholar 

  • Dick MW (1973) Saprolegniales. In: Ainsworth GC, Sparrow EK, Sussman AS (eds) The fungi: an advanced treatise. Vol IVB Academic Press, New York, pp 113–144

    Google Scholar 

  • Dick MW (2001) Straminipilous fungi. Kluwer Academic Publishers, Doldrecht

    Book  Google Scholar 

  • Ducklow HW (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 85–120

    Google Scholar 

  • Epstein SS (1995) Simultaneous enumeration of protozoa and micrometazoa from marine sandy sediments. Aquat Microb Ecol 9:219–227

    Article  Google Scholar 

  • Fell JW, Newell SY (1998) Biochemical and molecular methods for the study of marine fungi. In: Cookset KE (ed) Molecular approaches to the study of the ocean. Chapman & Hall, London, pp 259–283

    Google Scholar 

  • Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaertner A (1968) Eine Methode des quantitativen Nachweises niederer mit Pollen köderbarer Pilze im Meerwasser und im Sediment. Veröff Inst Meeresforsch Bremerh 3:75–92

    Google Scholar 

  • Gaertner A (1977) Revision of the Thraustochytriaceae (lower marine fungi). I. Ulkenia nov. gen., with description of three new species. Veröff Inst Meeresforsch Bremerh 16:139–157

    Google Scholar 

  • Gaertner A (1979) Some fungal parasites found in the diatom populations of the Rosfjord area (South Norway) during March 1979. Veröff Inst Meeresforsch Bremerh 18:29–33

    Google Scholar 

  • Garcia-Vedrenne AE, Groner M, Page-Karjian A, Siegmund G-F, Singhal S, Sziklay J, Roberts S (2013) Development of genomic resources for a thraustochytrid pathogen and investigation of temperature influences on gene expression. PLoS One 8, e74196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldstein S (1963) Development and nutrition of new species of Thraustochytrium. Am J Bot 50:271–279

    Article  CAS  Google Scholar 

  • Gomaa F, Mitchell EAD, Lara E (2013) Amphitremida (Poche, 1913) is a new major, ubiquitous Labyrinthulomycete clade. PLoS One 8, e53046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481–483

    Article  CAS  PubMed  Google Scholar 

  • Ittekkot V (1988) Global trends in the nature of organic matter in river suspensions. Nature 332:436–438

    Article  CAS  Google Scholar 

  • Jones EBG, Harrison JL (1976) Physiology of marine Phycomycetes. In: Jones EBG (ed) Advances in aquatic mycology. Elek Science, London, pp 261–278

    Google Scholar 

  • Jones GM, O’Dor RK (1983) Ultrastructural observations on a thraustochytrid fungus parasitic in the gills of squid (Ilex illecebrosus LeSueur). J Parasitol 69:903–911

    Article  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    Article  PubMed  Google Scholar 

  • Kimura H, Naganuma T (2001) Thraustochytrids: a neglected agent of the marine microbial food chain. Aquat Ecosyst Health Manag 4:13–18

    Article  Google Scholar 

  • Kimura H, Fukuba T, Naganuma T (1999) Biomass of thraustochytrid protoctists in coastal water. Mar Ecol Prog Ser 189:27–33

    Article  CAS  Google Scholar 

  • Kimura H, Sato M, Sugiyama C, Naganuma T (2001) Coupling of thraustochytrids and POM, and of bacterio- and phytoplankton in a semi-enclosed coastal area: implication for different substrate preference by the planktonic decomposers. Aquat Microb Ecol 25:293–300

    Article  Google Scholar 

  • Leander CA, Porter D (2000) Redefining the genus Aplanochytrium (Phylum Labyrinthulomycota). Mycotaxon 76:439–444

    Google Scholar 

  • Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464

    Article  Google Scholar 

  • Lee Chang KJ, Nichols CM, Blackburn SI, Dunstan GA, Koutoulis A, Nichols PD (2014) Comparison of thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Mar Biotechnol 16:396–411

    Google Scholar 

  • Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois E, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Lahyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33:369–377

    Article  Google Scholar 

  • Li Q, Wang X, Liu X, Jiao N, Wang G (2013) Abundance and novel lineages of thraustochytrids in Hawaiian waters. Microb Ecol 66:823–30

    Article  PubMed  Google Scholar 

  • Liu Q, Allam B, Collier JL (2009) Quantitative real-time PCR assay for QPX (Thraustochytriidae), a parasite of the hard clam (Mercenaria mercenaria). Appl Environ Microbiol 75:4913–4918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Garcia P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–610

    Article  PubMed  Google Scholar 

  • Lyons MM, Ward JE, Smolowitz R, Uhlinger KR, Gast RJ (2005) Lethal marine snow: pathogen of bivalve mollusc concealed in marine aggregates. Limnol Oceanogr 50:1983–1988

    Article  Google Scholar 

  • Lyons MM, Smolowitz R, Dungan CF, Roberts SB (2006) Development of a real time quantitative PCR assay for the hard clam pathogen Quahog Parasite Unknown (QPX). Dis Aquat Org 72:45–52

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió C (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Massana R, Del Campo J, Sieracki ME, Audic S, Logares R (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866

    Article  PubMed Central  PubMed  Google Scholar 

  • Moorthi SD, Countway PD, Stauffer BA, Caron DA (2006) Use of quantitative real-time PCR to investigate the dynamics of the red tide dinoflagellate Lingulodinium polyedrum. Microb Ecol 52:136–150

    Article  CAS  PubMed  Google Scholar 

  • Moss ST (1986) Biology and phylogeny of the Labyrinthulales and Thraustochytriales. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 105–129

    Google Scholar 

  • Moss ST (1991) Thraustochytrids and other zoosporic marine fungi. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon, Oxford, pp 415–425

    Google Scholar 

  • Muehlstein LK (1992) The host-pathogen interaction in the wasting disease of eelgrass, Zostera marina. Can J Bot 70:2081–2088

    Article  Google Scholar 

  • Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine Eukaryotes, thraustochytrids. Mar Biotechnol 13:133–136

    Article  CAS  PubMed  Google Scholar 

  • Naganuma T, Miura S (1997) Abundance, production and viability of bacterioplankton in the Seto Inland Sea, Japan. J Oceanogr 53:435–442

    Google Scholar 

  • Naganuma T, Takasugi H, Kimura H (1998) Abundance of thraustochytrids in coastal plankton. Mar Ecol Prog Ser 162:105–110

    Article  Google Scholar 

  • Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yagishi Y, Honda D (1996) Production of docosahexaenoic and docosapentaenoic acid by Schizochytrium sp. isolated from Yap islands. J Am Oil Chem Soc 73:1421–1426

    Article  CAS  Google Scholar 

  • Nakai R, Nakamura K, Jadoon WA, Kashihara K, Naganuma T (2013) Genus-specific quantitative PCR of thraustochytrid protists. Mar Ecol Prog Ser 486:1–12

    Article  CAS  Google Scholar 

  • Olive LS (1975) The mycetozoans. Academic, New York

    Google Scholar 

  • Patterson DJ (1989) Stramenopiles: chromophytes from a protistan perspective. In: Green JC, Leadbeater BSC, Diver WI (eds) The chromophyte algae: problems and perspectives. Clarendon, Oxord, pp 357–379

    Google Scholar 

  • Perkins FO (1972) The ultrastructure of holdfasts, “rhizoids”, and “slime tracks” in thraustochytriaceous fungi and Labyrinthula spp. Arch Mikrobiol 84:95–118

    Article  CAS  PubMed  Google Scholar 

  • Perkins FO (1973) A new species of marine labyrinthulid Labyrinthuloides yorkensis gen. nov. spec. nov. – cytology and fine structure. Arch Mikrobiol 90:1–17

    Article  Google Scholar 

  • Pomeroy LR, Weibe WJ (1993) Energy sources for microbial food webs. Mar Microb Food Webs 7:101–118

    Google Scholar 

  • Porter D (1969) Ultrastructure of Labyrinthula. Protoplasma 67:1–19

    Article  Google Scholar 

  • Porter D (1986) Mycoses of marine organisms: an overview of pathogenic fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 141–153

    Google Scholar 

  • Porter D (1989) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, pp 388–398

    Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54:3–11

    Article  Google Scholar 

  • Raghukumar S, Schaumann K (1993) An epifluorescence microscopy method for direct detection and enumeration of the fungi-like marine protists, the thraustochytrids. Limnol Oceanogr 38:182–187

    Article  Google Scholar 

  • Raghukumar S, Ramaiah N, Raghukumar C (2001) Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquat Microb Ecol 24:175–186

    Article  Google Scholar 

  • Sakaguchi K, Matsuda M, Kobayashi T, Ohara J, Hamaguchi R, Abe E, Nagano N, Hayashi M, Ueda M, Honda D, Okita Y, Yaoka Y, Sugimoto S, Okino N, Ito M (2012) Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for thraustochytrids. Appl Environ Microbiol 78:3193–3202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santangelo G, Bongiorni L, Pignataro L (2000) Abundance of thraustochytrids and ciliated protozoans in a Mediterranean sandy shore determined by an improved, direct method. Aquat Microb Ecol 23:55–61

    Article  Google Scholar 

  • Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of the brown alga Sargassum cinereum J. Ag. Indian J Mar Sci 22:159–167

    CAS  Google Scholar 

  • Schärer L, Knoflach D, Vizoso DB, Rieger G, Peintner U (2007) Thraustochytrids as novel parasitic protists of marine free-living flatworms: Thraustochytrium caudivorum sp. nov. parasitizes Macrostomum lignano. Mar Biol 152:1095–1104

    Article  Google Scholar 

  • Smolowitz R, Leavitt D, Perkins F (1998) Observations of a protistan disease similar to QPX in Mercenaria mercenaria (hard clams) from the coast of Massachusetts. J Invertebr Pathol 71:9–25

    Article  PubMed  Google Scholar 

  • Sparrow FK (1936) Biological observations on the marine fungi of Woods Hole waters. Biol Bull Mar Biol Lab Woods Hole 70:236–273

    Article  Google Scholar 

  • Sparrow FK (1943) The aquatic phycomycetes, 1st edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Stokes NA, Ragone-Calvo LM, Reece KS, Burreson EM (2002) Molecular diagnostics, field validation, and phylogenetic analysis of Quahog Parasite Unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria. Dis Aquat Org 52:233–247

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Yoshida M, Inouye I, Watanabe MM (2014) Diplophrys mutabilis sp. nov., a new member of Labyrinthulomycetes from freshwater habitats. Protist 165:50–65

    Article  PubMed  Google Scholar 

  • Takao Y, Tomaru Y, Nagasaki K, Sasakura Y, Yokoyama R, Honda D (2007) Fluorescence in situ hybridization using 18S rRNA-targeted probe for specific detection of thraustochytrids (Labyrinthulomycetes). Plankton Benthos Res 2:91–97

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsui CKM, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Peterson PD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phyl Evol 50:129–140

    Article  CAS  Google Scholar 

  • Ulken A (1986) Estimation of thraustochytrid propagules in two mangrove swamps. Bot Mar 29:85–89

    Article  Google Scholar 

  • Ulken A, Jaeckle I, Bahnweg G (1985) Morphology, nutrition and taxonomy of an Aplanochytrium sp. from the Sargasso Sea. Mar Biol 85:89–95

    Article  Google Scholar 

  • Valiela I (ed) (1995) Marine ecological processes, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Vishniac HS (1956) On the ecology of the lower marine fungi. Biol Bull 111:410–414

    Article  Google Scholar 

  • Whyte SK, Cawthorn RJ, McGladdery SE (1994) QPX (Quahaug Parasite X), a pathogen of northern quahaug Mercenaria mercenaria from the Gulf of St. Lawrence, Canada. Dis Aquat Org 19:129–136

    Article  Google Scholar 

  • Wong MKM, Vrijmoed LLP, Au DWT (2005) Abundance of thraustochytrids on fallen decaying leaves of Kandelia candel and mangrove sediments in Futian National Nature Reserve, China. Bot Mar 48:374–378

    Article  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  • Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato phylogeny based on morphology, chemotaxonomical characteristics and 18S rRNA gene (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium and Sicyoidochytrium gen. nov. Mycoscience 48:329–341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Daiske Honda, Konan University, for his careful reading and constructive comments on an earlier draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Naganuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nakai, R., Naganuma, T. (2015). Diversity and Ecology of Thraustochytrid Protists in the Marine Environment. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_13

Download citation

Publish with us

Policies and ethics