Skip to main content
Log in

Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Heterokonts are evolutionarily important as the most nutritionally diverse eukaryote supergroup and the most species-rich branch of the eukaryotic kingdom Chromista. Ancestrally photosynthetic/phagotrophic algae (mixotrophs), they include several ecologically important purely heterotrophic lineages, all grossly understudied phylogenetically and of uncertain relationships. We sequenced 18S rRNA genes from 14 phagotrophic non-photosynthetic heterokonts and a probable Ochromonas, performed phylogenetic analysis of 210–430 Heterokonta, and revised higher classification of Heterokonta and its three phyla: the predominantly photosynthetic Ochrophyta; the non-photosynthetic Pseudofungi; and Bigyra (now comprising subphyla Opalozoa, Bicoecia, Sagenista). The deepest heterokont divergence is apparently between Bigyra, as revised here, and Ochrophyta/Pseudofungi. We found a third universal heterokont signature sequence, and deduce three independent losses of ciliary hairs, several of 1-2 cilia, 10 of photosynthesis, but perhaps only two plastid losses. In Ochrophyta, heterotrophic Oikomonas is sister to the photosynthetic Chrysamoeba, whilst the abundant freshwater predator Spumella is biphyletic; neither clade is specifically related to Paraphysomonas, indicating four losses of photosynthesis by chrysomonads. Sister to Chrysomonadea (Chrysophyceae) is Picophagea cl. nov. (Picophagus, Chlamydomyxa). The diatom-parasite Pirsonia belongs in Pseudofungi. Heliozoan-like actinophryids (e.g. Actinosphaerium) are Opalozoa, not related to pedinellids within Hypogyristea cl. nov. of Ochrophyta as once thought. The zooflagellate class Bicoecea (perhaps the ancestral phenotype of Bigyra) is unexpectedly diverse and a major focus of our study. We describe four new biciliate bicoecean genera and five new species: Nerada mexicana, Labromonas fenchelii (=Pseudobodo tremulans sensu Fenchel), Boroka karpovii (=P. tremulans sensu Karpov), Anoeca atlantica and Cafeteria mylnikovii; several cultures were previously misidentified as Pseudobodo tremulans. Nerada and the uniciliate Paramonas are related to Siluania and Adriamonas; this clade (Pseudodendromonadales emend.) is probably sister to Bicosoeca. Genetically diverse Caecitellus is probably related to Anoeca, Symbiomonas and Cafeteria (collectively Anoecales emend.). Boroka is sister to Pseudodendromonadales/Bicoecales/Anoecales. Placidiales are probably divergent bicoeceans (the GenBank Placidia sequence is a basidiomycete/heterokont chimaera). Two GenBank ‘opalinid’ sequences are fungal; Pseudopirsonia is cercozoan; two previous GenBank ‘Caecitellus’ sequences are Adriamonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Andersen RA (1987) Synurophyceae classis nov., a new class of algae. Am J Bot 74:337–353

    Google Scholar 

  • Andersen RA, Saunders GW, Paskind MP, Sexton J (1993) Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. J Phycol 29:701–715

    Article  CAS  Google Scholar 

  • Andersen RA, Van de Peer Y, Potter MD, Sexton JP Kawachi M, LaJeunesse T (1999) Phylogenetic analysis of the SSU rRNA from members of the Chrysophyceae. Protist 150:71–84

    CAS  PubMed  Google Scholar 

  • Andersen RA, Wetherbee R (1992) Microtubules of the flagellar apMatus are active in prey capture of the chrysophycean alga Epipyxis pulchra. Protoplasma 166:1–7

    Article  Google Scholar 

  • Archer W (1875) Memoirs on Chlamydomyxa labyrinthuloides nov. gen. et sp., a new freshwater sarcodic organism. Q J Microsc Sci 15:107–130

    Google Scholar 

  • Atkins MS, Teske AP, Anderson OR (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the pastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411

    Article  CAS  PubMed  Google Scholar 

  • Bailey JC, Bidigare RR, Christensen SJ, Andersen RA (1998) Phaeothamniophyceae classis nova: a new lineage of chromophytes based on photosynthetic pigments, rbcL sequence analysis and ultrastructure. Protist 149:242–263

    Google Scholar 

  • Barr D, Desaulniers NL (1987) Ultrastructure of the Lagena radicola zoospore, including a comparison with the primary and secondary Saprolegnia zoospores. Can J Bot 65:2161–2176

    Google Scholar 

  • Barr D, Cavalier-Smith J (2004) Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int J Syst Evol Microbiol 54:2393–2404

    CAS  PubMed  Google Scholar 

  • Bass D, Moreira D, López-García P, Polet S, Chao EE, von der Heyden S, Pawlowski J, Cavalier-Smith T (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156:215–224

    Article  Google Scholar 

  • Beam CA, Preparata RM, Himes M, Nanney DL (1993) Ribosomal RNA sequencing of members of the Crypthecodinium cohnii (Dinophyceae) species complex; comparison with soluble enzyme studies. J Eukaryot Microbiol 40:660–667

    CAS  PubMed  Google Scholar 

  • Ben Ali A, De Baere R, De Wachter R, Van de Peer Y (2002) Evolutionary relationships among heterokont algae (the autotrophic stramenopilesi based on combined analyses of small and large subunit ribosomal RNA. Protist 153:123–132

    CAS  PubMed  Google Scholar 

  • Ben Ali A, De Baere R, Van der Auwera G, De Wachter R, Van de Peer Y (2001) Phylogenetic relationships amojig algae based on complete large-subunit rRNA sequences. Int J Syst Evol Microbiol 51:737–749

    CAS  PubMed  Google Scholar 

  • Berney C, Fahrni J, Pawlowski J (2004) How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of enviroijniental DNA surveys. BMC Biol 2:13

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Helmchen T, Melkonian M (1995) Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyt. J Eukaryot Microbiol 42:65–69

    CAS  PubMed  Google Scholar 

  • Bortnick RN, Powell MJ, Bangert TN (1985) Zoospores fine structure of the parasite Olpidiopsis saprolegniae variety saprolegniae (Oomycetes, Lagenidiales). Mycologia 77:861–878

    Google Scholar 

  • Caron DA, Lim EL, Dennett MR, Gast RJ, Kosman C, DeLong EF (1999) Molecular phylogenetic analysis of the heterotrophic chrysophyte genus Paraphysomonas (Chrysophycael and the design of rRNA-targeted oligonucleotide probes for two species. J Phycol 35:824–837

    Article  CAS  Google Scholar 

  • Carranza S, Giribet G, Ribera C, Baguna, Riutort M (1996) Evidence that two types of 18S rDNA coexist in the genome of Dugesid (Schmidted) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol Biol Evol 13:824–832

    CAS  PubMed  Google Scholar 

  • Cash J (1905) The British freshwater Rhizopoda and Heliozoa. Ray Society, London

    Google Scholar 

  • Cavalier-Smith T (1974) Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci 16:529–556

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1982) The origins of plastids. Biol J Linn Soc 17:289–306

    Google Scholar 

  • Cavalier-Smith T (1986a) The kingdom Chromista: origin and systematics. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress, Bristol, pp 309–347

    Google Scholar 

  • Cavalier-Smith T (1986b) The kingdoms of organisms. Nature 324:416–417

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1989) The kingdom Chromista. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: Problems and perspectives. Clarendon Press, Oxford, pp 381–407

    Google Scholar 

  • Cavalier-Smith T (1991) Cell diversification in heterotrophic flagellates. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon Press, Oxford, pp 113–131

    Google Scholar 

  • Cavalier-Smith T (1992) The number of symbiotic origins of organelles. BioSystems 28:91–106; discussion 107–108

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1993a) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994

    CAS  Google Scholar 

  • Cavalier-Smith T (1993b) The origin, losses and gains of chloroplasts. In: Lewin RA (ed) Origin of plastids; Symbiogenesis, prochlorophytes and the origins of chloroplasts. Chapman & Hall, New York, pp 291–348

    Google Scholar 

  • Cavalier-Smith T (1993c) The protozoan phylum Opalozoa. J Euk Microbiol 40:609–615

    Google Scholar 

  • Cavalier-Smith T (1994) Origin and relationships of Haptophyta. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 413–435

    Google Scholar 

  • Cavalier-Smith T (1995a) Membrane heredity, symbiogenesis, and the multiple origins of algae. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. The National Science Museum Foundation, Tokyo, pp 75–114

    Google Scholar 

  • Cavalier-Smith T (1995b) Zooflagellate phytogeny and classification, Tsitologiia 37:1010–1029

    CAS  Google Scholar 

  • Cavalier-Smith T (1996/7) Amoeboflagellates and mitochondrial cristae in eukaryotic evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenk 147:237–258

    Google Scholar 

  • Cavalier-Smith T (1997) Sagenista,and Bigyra, two phyla of heterotrophic heterokont chromists. Archiv Protistenk 148:253–267

    Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73:203–266

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflgellate, and sporozoan plastid origins and the eukaryotic family tree. J Euk Microbiol 46:347–366

    CAS  Google Scholar 

  • Cavalier-Smith T (2000a) Flagellate megaevolution; the basis for eukaryote diversification. In: Green JC, Leadbeater BSC (eds) The flagellates. Taylor and Francis, London, pp 361–390

    Google Scholar 

  • Cavalier-Smith T (2000b) Membrane heredity and early chloroplast evolution, Trends Plant Sci 5:174–182

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2002a) The phagotrophic origin eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    CAS  Google Scholar 

  • Cavalier-Smith T (2002b) The neomuran orign of archaebacteria, the negibacterial of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76

    CAS  Google Scholar 

  • Cavalier-Smith T (2003a) The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malammonas): their evolutionary affinities and new higher taxa. Int J Syst Evol Microbiol 53:1741–1758

    CAS  Google Scholar 

  • Cavalier-Smith T (2003b) Genomic reduction and evolution of novel genetic membranes and protein-targetng machinery in eukaryote-eukaryote chimaeras (meta-algae). Phil Trans R Soc B 358:109–134

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2003e) Protist phytogeny and the high-level classification of Protozoa. Eur J Protistol 39:338–348

    Google Scholar 

  • Cavalier-Smith T (2004c) Chromalveolate diversity and cell megaevolution: interplay of membranes, genomes and cytoakeleton. In: Hirt RP, Horner DS (eds) Organelles, genomes and eukaryote phytogeny. CRC Press, London, pp 75–108

    Google Scholar 

  • Cavalier-Snfiith T (2004b) Only six kingdoms of life. Proc Soc Lond B 271:1251–1262

    Article  CAS  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Chao EE (1994) Thraustochytrids are comjsts not fungi: 18S rRNA signatures of Heterokonta. Phil Trans R Soc Lond B 145:209–220

    Google Scholar 

  • Cavalier-Smith T, Chao EE (1995) The opalozoan Apusomonas is related to the common ancestor of animals, fungi, and choanoflagellates. Proc R Soc Lond B 261:1–6

    Google Scholar 

  • Cavalier-Smith T, Chao EE (1996) 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta). Phycologia 35:500–510

    Google Scholar 

  • Cavalier-Smith T, Chao EE (2003a) Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J Mol Evol 56:387–396

    CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (2003b) Phylogeny and classification of phylum Cercozoa (Protozoa), Protist 154:341–358

    Google Scholar 

  • Cavalier-Smith T, Chao EE (2003c) Phylogeny of Choanozoa, Apusozoa, and other Protozoa and early eukaryote megaevolution. J Mol Evol 56:540–563

    CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE, Allsopp MTEP (1995) Ribosomal RNA evidence for chloroplast loss within Heterokonta; Pedingllid relationships and a revised classification of ochristan algae. Archiv Protistenk 145:209–220

    Google Scholar 

  • Cavalier-Smith T, Chao EE, Thompson CE, Hourihane SL (1995/1996) Oikomonas, a distinctive zooflagellate related to chrysomonads. Arch Protistenkd 146:273–279

    Google Scholar 

  • Cole DG (2003) Intraflagellar transport in the unicellular green alga, Chlamydomonas reinhardtii. Protist 154:181–191

    Article  CAS  PubMed  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad USA 99:8324–8329

    Article  CAS  PubMed  Google Scholar 

  • Delwiche CF (1999) Tracing thefhread of plastid diversity through the tapestry of life. Am Nat 154:181–191

    Article  Google Scholar 

  • Dick M (2001) Straminipilous fungi. CABI International, Wallingford

    Google Scholar 

  • Dzik J (1995) Yunnanozoon and the ancestry of chordates. Acta Palaeont Polon 40:341–360

    Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  CAS  PubMed  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18:418–426

    CAS  PubMed  Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellate. I. Some important forms and their functional morphology. Mar Ecol Prog Ser 8:211–223

    Google Scholar 

  • Fenchel T, Patterson DJ (1988) Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Mar Microb Food Webs 3:9–19

    Google Scholar 

  • Foth BJ, McFadden GI (2003) The apicoplast: a plastidHp Plasmodium falciparum and other Apicomplexan parasites. Int Rev Cytol 224:57–110

    PubMed  Google Scholar 

  • Gibbs SP (1962) Nuclear envelope-chloroplast relationships in algae. J Cell Biol 14:433–444

    Article  CAS  PubMed  Google Scholar 

  • Goertzen LR, Theriot EC (2003) Effect of taxon sampling, character weighting, and combined data on the interpretation of relationships among the heterokont algae. J Phycol 39:423–439

    CAS  Google Scholar 

  • Grassé P-P, Deflandre G (1952) Ordre des Bicocidea, In: Grassé P-P (ed) Traité de Zoologie: Anatomic, Systématique, Biologie: I Fasc. 1 Phylogénie. Protozoaires: Généralités, Flagellés. Masson, Paris, pp 599–591

    Google Scholar 

  • Griessmann K (1913) Ueber marine Flagellaten. Archiv Protistenk 32:1–78

    Google Scholar 

  • Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Loiseaux de Göer S, Vaulot D (1999a) Bolidomonas: a new genus itvo species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381

    Article  Google Scholar 

  • Guillou L, Chrétiennot-Dinet MJ, Boulben S, Moon-van der Staay SY, Vaulot D (1999b) Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov.) (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150:383–398

    CAS  Google Scholar 

  • Gunderson JH, Sogin ML, Wollett G, Hollingdale M, de la Cruz VF, Waters AP, McCutchan TF (1987) Structurally distinct, stage-specific ribosomes occur inPlasmodium. Science 238:933–937

    CAS  PubMed  Google Scholar 

  • Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735

    CAS  PubMed  Google Scholar 

  • Bibberd DJ (1971) The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of the Chrysophyceae. Biol J Linn Soc 72:55–80

    Google Scholar 

  • Hibberd DJ (1985) Observations on the ultrastructure of new species of Pseudodendromona Bourrelly (P. operculifera and P. insignis) and Cyathobodo Petersen and Hansea. (C. peltatus and C. gemmatus), Pseudodendromonadida ord, nov.). Archiv Protistenk 129:3–11

    Google Scholar 

  • Hillis DM, Pollock DD, McGuire JA, Zwickl DJ (2003) Is sparse taxon sampling a problem for phylogenetic inference? Syst Biol 52:124–126

    PubMed  Google Scholar 

  • Honda D, Inouye I (2002) Ultrastructure and taxonomy of a marine photosynthetic stramenopile Phaeomonas parva gen. et sp, nov, (Pinguiophyceae) with emphasis on the flagellar apparatus architecture. Phycol Res 50:75–89

    Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phytogeny of labyrinthulids and thraustophytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    CAS  PubMed  Google Scholar 

  • James-Clark H (1868) On the Spongiae Ciliatae as Infusoria Flagellata: or observations on the structure, animality, and relationship of Leucosolenia botryoides, Bowerbank. Memoirs Boston Soc Nat Hist 1:305–340 plus plates 9, 10

    Google Scholar 

  • Karpov SA (2000) Ultrastructure of the aloricate bicosoecid Pseudobodo tremulans, with revision of the order Bicosoecida. Protistology 1:101–109

    Google Scholar 

  • Karpov SA (2001) Protist cell structure. Tessa, St Petersburg

    Google Scholar 

  • Karpov SA, Fokin SA (1995) The structural diversity of the flagellar transition zone in heterotrophic flagellates and other protists. Cytology 37:1038–1052

    Google Scholar 

  • Karpov SA, Kersanach R, Williams DM (1998) Ultrastructure and 18S rRNA gene sequence of a small heterqtrophic flagellate Siluania monomastiga gen. et sp. nov. (Bicosoecida). Eur J Protistol 34:414–425

    Google Scholar 

  • Karpov SA, Sogin M, Silberman JD (2001) Rootlet homology, taxononmy, and phytogeny of bicosoecids based on 18S rRNA gene sequences. Protistology 2:34–47

    Google Scholar 

  • Kawachi M, Inouye I, Honda D, O’Kelly CI, Bailey JC, Bidgare RR, Andersen RA (2002a) The Pinguiophyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega-3 fatty acids. Phycol Res 50:31–47

    CAS  Google Scholar 

  • Kawachi M, Noël MH, Andersen RA (2002b) Re-examination of the marine ‘chrysophyte’ Polypodiochrysis teissieri (Pinguiophyceae). Phycol Res 50:91–100

    Google Scholar 

  • Kawai H, Maeba S, Sasaki H, Okuda K, Henry EC (2003) Schizoclaclia ischiensis: a new filamentous marine chromophyte belonging to a new class, Schizocladiophyceae. Protist 154:211–228

    Article  CAS  PubMed  Google Scholar 

  • Kent WS (1880–1882) A manual of the Infusoria. Bogue, London

    Google Scholar 

  • Kostka M, Hampl V, Cepicka I, Flegr J (2004) Phylogenetic position of Rnoopalina intestinalis based on SSU rRNA gene sequence. Mol Phylogenet Evol 33:220–224

    CAS  PubMed  Google Scholar 

  • Kuehn S, Medlin LK, Eller G (2004) Phylogettetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded smallsubunit ribosomal DNAand redescription of Pseudopirsonia mucosa (Drebes) comb. nov. Protist 155:143–156

    CAS  Google Scholar 

  • Lankester ER (1890) Zoological articles contributed to the “Encyclopedia Brittanica”. Adam and Charles Black, London

    Google Scholar 

  • Larsen J, Pattemon DJ (1990) Some flagellates (Protista) from tropical marine sediments, J Nat Hist 24:801–937

    Google Scholar 

  • Leander CA, Porter D, (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464

    Google Scholar 

  • Leedale G (1974) How many are the kingdoms of organisms? Taxon 23:261–270

    Google Scholar 

  • Leipe DD, Tong SM, Goggin CL, Slemenda SB, Pienizek NJ, Sogin ML (1996) 16S-like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group. Eur J Protistol 32:449–458

    Google Scholar 

  • Luther A, (1899) Ueber Chlorosaccus, eine neue Gattung der Süsswasseralgen, Bihang till Kongliga Svenska Vetenkaps Akademiens Handlingar 24, III:1–22

    Google Scholar 

  • Manton I, Clarke B (1950) Electron microscope observations on the spemiatozoid of Fucus. Nature 166:973–974

    CAS  PubMed  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells, Yale University Press, New Haven

    Google Scholar 

  • McCutchan TF, de la Cruz VF, Lal AA, Gunderson JH, Elwood HJ, Sogin ML (1988) Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Mol Biochem Parasitol 28:63–68

    Article  CAS  PubMed  Google Scholar 

  • Medlin L, Kooistra WHCF, Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids. PI Syst Evol Suppl 11:187–219

    CAS  Google Scholar 

  • Mikrjukov KA, Patterson DJ (2001) Taxonomy and phylogeny of Heliozoa. III. Actinophryids, Acta Protozoologica 40:3–25

    Google Scholar 

  • Moestrup Ø (2000) The flagellate cytoskeleton; introduction of a general terminology for microtubular roots in protists. In: Leadbeater BS, Green JC (eds) The flagellates: unity, diversity and evolution, Taylor & Francis, London, pp 69–94

    Google Scholar 

  • Moestrup Ø (2002) Order Bicosoecida Grassé 1926. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the Protozoa. Society of Protozoologists, Lawrence, Kansas, pp 690–693

    Google Scholar 

  • Moriya M, Nakayama T, Inouye I (2000) Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (stramenopiles, incertae sedis), Protist 151:41–55

    Article  CAS  PubMed  Google Scholar 

  • Moriya M, Nakayama T, Inouye I (2002) A new class of the stramenopiles, Placididea classis nova: description of Placidia cafeteriopsis gen. et sp. nov. Protist 153:143–156

    Article  CAS  PubMed  Google Scholar 

  • Müller DG, Küpper FC, Küpper H (1999) Infection experiments reveal feoad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridicmyaejta), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycol Res 47:217–223

    Google Scholar 

  • Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Prop Natl Acad Sci USA 101:8066–8071

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Ishida K, Endoh H (2005) Reevaluation of the evolutionary position of opalinids based on β-tubulin and 18S rDNA phylogenies. J Mol Evol 60:695–705

    Article  CAS  PubMed  Google Scholar 

  • O’Kelly CJ (1989) The evolutionary origin of the brown algae: information from studies of motile cell ultrastructure. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 255–278

    Google Scholar 

  • O’Kelly CJ (2002) Glossomastix chrysoplasta n. gen., n. sp. (Pinguiophyceae), attew coccoidal, colony-forming golden alga from southern Australia. Phycol Res 50:67–74

    Google Scholar 

  • O’Kelly C, Nerad T (1998) Kinetid architecture and bicosoecid affinities of me marine heterotrophic nanoflagellate Cqecitellus parvulus (Griessmann 1913) Patterson et al. 1993. Eur J Protistol 34:306–375

    Google Scholar 

  • Patron NJ, Rogers MB, Keeling PJ (2004) Gene replacement of fructose- 1,6-bisphosphate aldolase bie hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell 3:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Patterson DJ (1989) Stramenopiles: chromophytes from a protistan perspective. In: Green JC, Leadbeater BS, Diver WL (eds) The chromophyte algae. Clarendon Press, Oxford, pp 357–379

    Google Scholar 

  • Patterson DJ (2002 dated 2000) Residual heterotrophic stramenopiles. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the Protozoa. Society of Protozoologists, Lawrence, Kansas, pp 751–754

    Google Scholar 

  • Patterson DJ, Lee WJ (2000) Geographic distribution and diversity of free-living heterotrophic flagpllates. In: Leadbeater BSC, Green JC (eds) The flagellates: unity, diversity and evolution, Taylor and Francis, London, pp 267–287

    Google Scholar 

  • Patterson DJ, Simpson AGB (1996) Heterotrophic flagellates from coastal marine aiid hypersaline sediments in Western Australia. Eur J Protistol 32:423–448

    Google Scholar 

  • Patterson DJ, Simpson AGB, Rogerson A (2002a, dated 2000) Amoebae of uncertain affinities. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the Protozoa. Society of Protozoologists, Lawrence, Kansas, pp 804–827

    Google Scholar 

  • Patterson DJ, Vørs N, Simpson AG, O’Kelly C (2002b, dated 2000) Residual free-living and predatory heterotrophic flagellates. In: Lee JJ, Leedale GF, Bradbury P (eds). An illustrated guide to the Protozoa. Society of Protozoologists, Lawrence, Kansas, pp 1302–1328

    Google Scholar 

  • Patterson DJ, Zölfell M (1991) Heterotrophic flagellates of uncertain taxonomic position. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon Press, Oxford, pp 427–476

    Google Scholar 

  • Pollock DD, Zwicjd DJ, McGuire JA, Hillis DM (2002) Increased taxon sampling is advantageous for phylogenetic inference. Syst Biol 51:664–671

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution, Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the Raphidophyceae and Xanthonhyeeae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. Am J Bot 84:962–972

    Google Scholar 

  • Preisig H, Andersen RA (2002, dated 2000) Chrysomonada (class Chrysophyceae Pascher, 1914). In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the Protozoa, Society of Protozoologists, pp 693–730

  • Preisig H, Vørs N, Hällfors G (1991) Diversity of heterotrophic heterokont flagellates. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Clarendon Press, Oxford, pp 361–399

    Google Scholar 

  • Preparata RM, Beam CA, Himes M, Nanney DL, Meyer EB, Simon EM (1992) Crypthecodinium and Tetrahymena: an exercise in comparative evolution. J Mol Evol 34:209–218

    Article  CAS  PubMed  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Ruinen J, (1938) Notizen der Salzflagellaten: II. Über die Verbreitung der Salzflagellaten, Archiv Protistenk 90:210–218

    CAS  Google Scholar 

  • Ryall K, Harper JT, Keeling PJ (2003) Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene 313:139–148

    Article  CAS  PubMed  Google Scholar 

  • Sáez AG, Probert I, Geisen M, Quinn P, Young JR, Medlin LK (2003) Pseudo-cryptic speciation in cocgolithophores. Proc Nat Acad Sci USA 100:7163–7168

    PubMed  Google Scholar 

  • Saunders GW, Potter D, Andersen RA (1997) Phylogenetic affinities of the Sarcinochrysidales and Chrysomeridales (Heterokonta) based on analyses of molecular and combined data. J Phycol 33:310–318

    CAS  Google Scholar 

  • Saunders GW, Potter D, Paskind MP, Andersen RA (1995) Cladistic analysis of combined traditional and molecular data sets reveal an algal lineage. Proc Natl Acad Sci USA 92:244–248

    CAS  PubMed  Google Scholar 

  • Scheckenbach F, Wylezich C, Weitere M, Hausmann K, Anidt H (2005) Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquatic Microbial Ecol 38:239–247

    Google Scholar 

  • Schnepf E, Drebes G, Elbrächter M (1990) Pirsonia guinardiae, gen, et spec, nov.: a parasitic flagellate on the marine diatom Guinardia flaccida with an unusual mode of food uptake, Helgol Meeresunters 44:275–293

    Google Scholar 

  • Sekiguchi H, Moriya M, Nakayaina T, Inouye I (2002) Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153:157–167

    Article  CAS  PubMed  Google Scholar 

  • Silberman JD, Sogin ML, Leipe DD, Clark CG (1996) Human parasite finds taxonomic home. Nature380–398

  • Skuja H (1956) Taxonomische und biologische Studien iiber das Phytoplankton schwedischer Binnengewässer. Nov Act Reg Soc Sci Uppsal Ser 4/16:1–404

    Google Scholar 

  • Patterson DJ (1986) An analysis of heliozoan interrelationships: an example of the potentials and limitations ultrastructural approaches to the study of protistan phytogeny, Proc R Soc Lond B 227:325–366

    Google Scholar 

  • Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297:89–91

    Article  CAS  PubMed  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2003a) The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666

    Article  CAS  Google Scholar 

  • Stechmann A, Cavalier-Smith (2003b) Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. J Mol Evol 57:408–419

    Article  CAS  Google Scholar 

  • Stein FR (1878) Der Organismus der Infusionsthiere. III. Der Organismus der Flagellaten I. Engelmann, Leipzig

  • Strüder-Kypke MC, Hausmann K (1998) Ultrastructure of the heterotrophic flagellates Cyathobodo sp., Rhipidodendron huxleyi Kent, 1880, Spongomonas saccculus Kent, 1880, and Spongomonas sp. Eur J Protistol 34:376–390

    Google Scholar 

  • Swofford DW (1999) PAUP* 4.0b10. Sinauer Sunderland, MS

    Google Scholar 

  • Thomsen HA, Larsen J (1993) The ultrastructure of Commation gen. nov. (stramenopiles incertae sedis), a genus of heterotrophic nanoplanktonic flagellates from Antarctic waters. Eur J Protistol 29:462–477

    Google Scholar 

  • Tong SM (1995) Developayella elegans nov. gen., spec., a new type of heterotrophic flagellate from marine plankton. Eur J Protistol 31:24–31

    Google Scholar 

  • Tong SM (1997) Heterotrophic flagellates and other protists from Southampton Water, UK. Ophelia 47:71–131

    Google Scholar 

  • van de Peer Y, Baldauf SL, Doolittle WF, Meyer A (2000) An updated and comprehensive rRNA phylogpv of (crown) eukaryotes based on rate-calibrated evolutionary distances. J Mol Evol 51:565–576

    PubMed  Google Scholar 

  • Verhagen FJM, Zölffel M, Brugerolle G, Patterson DJ (1994) Adriamonas peritocrescems gen. nov., sp. nov., a new free-living soil flagellate (Protista, Pseudodendromonadidae incertae sedis). Eur J Protistol 30:295–308

    Google Scholar 

  • von der Heyden S, Chao EE, Cavalier-Smith T (2004a) Genetic diversity ofgoniGmonads: an ancient divergence between marine and freshwater species. Bur J Phycol 39:343–550

    Google Scholar 

  • von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T (2004b) Ribosomal RNA phylogew bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Euk Microbiol 51:402–416

    Google Scholar 

  • von der Heyden S, Cavalier-Smith T (2005) Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol 55:2605–2621

    PubMed  Google Scholar 

  • Vørs N (1992) Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 36:1–109

    Google Scholar 

  • Wenderoth K, Marquardt J, Fraunholz M, Van de Peer Y, Wastl J, Maier U-G (1999) The taxonomic position of Chlamydomyxa labyrinthuloides. Europ J Phycol 34:97–108

    Google Scholar 

  • Wylezich C, Meisterfeld R, Meisterfeld S, Schlegel M (2002) Phylogenetic analyses of small subunit ribosomal RNA coding regions reveal a monophyktic lineage of euglyphid testate amoebae (Order Euglyphida). J Eukaryot Microbiol 49:108–118

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya JD (2002) The single, ancient origin of chromist plastids, Proc Natl Acad Sci USA 99:15507–15512

    CAS  PubMed  Google Scholar 

  • Zettler LAA, Nerad TA, O’Kelly CJ, Sogin ML (2001) The nueleariid amoebae: more protists at the animal-fungal boundary. J Eukaryot Microbiol 48:293–297

    Article  PubMed  Google Scholar 

  • Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

TCS thanks NSERC Canada and NERC UK for research grants; the Canadian Institute for Advanced Research and NERC for fellowship support. We thank A. P. Mylnikov for cultures, D. Caron and R. Gast for the WHOI cultures, E. Harley and M. P. Berman for hospitality at the University of Cape Town, and Fiona Hannah for hospitality at Millport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Cavalier-Smith.

Additional information

[Reviewing Editior: Patnck J. Keeling]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalier-Smith, T., Chao, E.EY. Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista). J Mol Evol 62, 388–420 (2006). https://doi.org/10.1007/s00239-004-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0353-8

Keywords

Navigation