Skip to main content

Advertisement

Log in

Use of Quantitative Real-Time PCR to Investigate the Dynamics of the Red Tide Dinoflagellate Lingulodinium polyedrum

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A new method based on quantitative real-time polymerase chain reaction (qPCR) was developed and applied to quantify the red tide dinoflagellate Lingulodinium polyedrum in natural seawater samples and in laboratory cultures. The method uses a Molecular Beacon™ approach to target a species-specific region of the small subunit ribosomal RNA gene. The accuracy of the method was verified by microscopical counts using cultures of the dinoflagellate isolated from coastal waters near Los Angeles, CA, and with natural water samples spiked with cultured L. polyedrum. The method was applied to document the pattern and timing of vertical migration by the dinoflagellate in a 2-m water column on an 11:13 h light/dark photoperiod established in the laboratory. Positive phototaxis of L. polyedrum resulted in dense aggregations of the dinoflagellate within the top few centimeters of the water column during the light period. This pattern of distribution was readily established by both methods, although abundances of L. polyedrum determined using qPCR were higher than abundances determined by microscopy in the morning and lower in the afternoon and evening. These differences may have been a consequence of variability in the DNA content per cell because of synchrony of cell division. Counts using both methods to analyze natural samples collected from coastal waters in the Long Beach–Los Angeles area and adjacent San Pedro Channel were in close agreement. However, the qPCR method exhibited greater sensitivity than the microscopical method when L. polyedrum was present at low abundances, and qPCR had a much higher rate of sample throughput than microscopy. The development of this new approach for enumerating L. polyedrum provides a useful tool for studying the ecology of this important red tide species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allen, WE (1946) “Red water” in La Jolla Bay in 1945. Trans Am Microsc Soc 65: 262–264

    Article  Google Scholar 

  2. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Andersen, RA, Morton, SL, Sexton, JP (1997) Provasoli-Guillard National Center for Culture of Marine Phytoplankton 1997 list of strains. J Phycol 33(Suppl): 1–75

    Article  Google Scholar 

  4. Anderson, DM (1995) Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography. Rev Geophys 33: 1189–1200

    Article  Google Scholar 

  5. Anderson, DM, Gilbert, PM, Burkholder, JM (2002) Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25: 704–726

    Google Scholar 

  6. Anderson, DM, Keafer, BA, Geyer, WR, Signell, RP, Loder, TC (2005) Toxic Alexandrium blooms in the western Gulf of Maine: The plume advection hypothesis revisited. Limnol Oceanogr 50:328–345

    Article  Google Scholar 

  7. Anderson, DM, Kulis, DM, Keafer, BA, Berdalet, E (1999) Detection of the toxic dinoflagellate Alexandrium fundyense (Dinophyceae) with oligonucleotide and antibody probes: Variability in labeling intensity with physiological condition. J Phycol 35: 870–883

    Article  Google Scholar 

  8. Benson, DA, Karsch-Mizrachi, I, Lipman, DJ, Ostell, J, Wheeler, DL (2004) GenBank: Update. Nucleic Acids Res 32: D23–D26

    Article  PubMed  CAS  Google Scholar 

  9. Blasco, D (1978) Observations on the diel migration of marine dinoflagellates off the Baja California Coast. Mar Biol (N Y) 46: 41–47

    Google Scholar 

  10. Boni, L, Ceredi, A, Guerrini, F, Milandri, A, Pistocchi, R, Poletti, R, Pompei, M (2001) Toxic Protoceratium reticulatum (Peridiniales, Dinophyta) in the north-western Adriatic sea (Italy). In: Hallegraef, GM, Blackburn, SI, Bold, CI, Lewis, RI (Eds.) Harmful Algal Blooms 2000, Intergovernmental Oceanographic Commission of UNESCO, pp 137–140

  11. Bowers, HA, Tengs, T, Glasgow Jr, HB, Burkholder, JM, Rublee, PA, Oldach, PA (2000) Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Environ Microbiol 66: 4641–4648

    Article  PubMed  CAS  Google Scholar 

  12. Bustin, SA, Nolan, T (2004) Chemistries. In: Bustin, SA (Ed.) A–Z of quantitative PCR, 5. International University Line. La Jolla, CA, pp 215–278

    Google Scholar 

  13. Cetta, CM, Anderson, DM (1990) Cell cycle studies of the dinoflagellates Gonyaulax polyedra Stein and Gyrodinium uncatenum Hulburt during asexual and sexual reproduction. J Exp Mar Biol Ecol 135: 69–83

    Article  Google Scholar 

  14. Countway, PD, Gast, RJ, Savai, P, Caron, DA (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52: 95–106

    Article  PubMed  CAS  Google Scholar 

  15. Coyne, KJ, Hutchins, DA, Hare, CE, Cary, SC (2001) Assessing temporal and spatial variability in Pfiesteria piscicida distributions using molecular probing techniques. Aquat Microb Ecol 24: 275–285

    Article  Google Scholar 

  16. Dassow, Pv, Bearon, RN, Latz, MI (2005) Bioluminescent response of the dinoflagellate Lingulodinium polyedrum to developing flow: Tuning of sensitivity and the role of desensitization in controlling a defensive behavior of a planktonic cell. Limnol Oceanogr 50: 607–619

    Article  Google Scholar 

  17. Dodge, JD (1989) Some revisions of the family Gonyaulacaceae (Dinophyceae) based on a scanning electron microscope study. Bot Mar 32: 275–298

    Article  Google Scholar 

  18. Draisci, R, Ferrettii, E, Palleschi, L, Marchiafava, C, Poletti, R, Vivani, R (1999) High levels of yessotoxin in mussels and presence of yessotoxin and homo-yessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 37: 1187–1193

    Article  PubMed  CAS  Google Scholar 

  19. Elwood, HJ, Olsen, GJ, Sogin, ML (1985) The small-subunit ribosomal RNA gene sequences from hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2: 399–410

    PubMed  CAS  Google Scholar 

  20. Eppley, RW, Holm-Hansen, O, Strickland, JDH (1968) Some observations on the vertical migration of dinoflagellates. J Phycol 4: 333–340

    Article  Google Scholar 

  21. Eppley, RW, Reid, FMH, Cullen, JJ, Winant, CD, Stewart, E (1984) Subsurface patch of a dinoflagellate (Ceratium tripos) off Southern California: Patch length, growth rate, associated vertically migrating species. Mar Biol (N Y) 80: 207–214

    Google Scholar 

  22. Figueroa, RI, Bravo, I (2005) Sexual reproduction and two different encystment strategies of Lingulodinium polyedrum (Dinophyceae) in culture. J Phycol 41: 370–379

    Article  Google Scholar 

  23. Galluzzi, L, Penna, A, Bertozzini, E, Vila, M, Garces, E, Magnani, M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate). Appl Environ Microbiol 70: 1199–1206

    Article  PubMed  CAS  Google Scholar 

  24. Godhe, A, Otta, SK, Rehnstam-Holm, A-S, Karunasagar, I, Karunasagar, I (2001) Polymerase chain reaction in detection of Gymnodinium mikimotoi and Alexandrium minutum in field samples from Southwest India. Mar Biotechnol 3: 152–162

    Article  PubMed  CAS  Google Scholar 

  25. Guillard, RRH, Ryther, JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea. Cleve Can J Microbiol 8: 229–239

    CAS  Google Scholar 

  26. Guillou, L, Nézan, E, Cueff, V, Erard-Le Denn, E, Cambon-Bonavita, M-A, Gentien, P, Barbier, G (2002) Genetic diversity and molecular detection of three toxic dinoflagellate genera (Alexandrium, Dinophysis, and Karenia) from French coasts. Protist 153: 223–238

    Article  PubMed  CAS  Google Scholar 

  27. Hall, TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98

    CAS  Google Scholar 

  28. Hallegraeff, GM (1993) Review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99

    Google Scholar 

  29. Hallegraeff, GM, Bolch, CJ (1992) Transport of diatom and dinoflagellate resting spores in ships’ ballast water: Implications for plankton biogeography and aquaculture. J Plankton Res 14: 1067–1084

    Article  Google Scholar 

  30. Hastings, JW, Sweeney, BM (1960) The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax polyedra. J Gen Physiol 43: 697–705

    Article  PubMed  CAS  Google Scholar 

  31. Heaney, SI, Eppley, RW (1981) Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture. J Plankton Res 3: 331–344

    Article  Google Scholar 

  32. Hershkovitz, MA, Lewis, LA (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol 13: 1276–1295

    PubMed  CAS  Google Scholar 

  33. Higuchi, R, Dollinger, G, Walsh, PS, Griffith, R (1992) Simultaneous amplification and detection of specific DNA sequences. Bio/Technology 10: 413–417

    Article  CAS  PubMed  Google Scholar 

  34. Hoagland, P, Anderson, DM, Kaoru, Y, White, AW (2002) The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries 25: 819–837

    Google Scholar 

  35. Holmes, RW, Williams, PM, Eppley, RW (1967) Red water in La Jolla Bay, 1964–1966. Limnol Oceanogr 12: 503–512

    CAS  Google Scholar 

  36. Homma, K, Hastings, JW (1988) Cell cycle synchronization of Gonyaulax polyedra by filtration: Quantized generation times. J Biol Rhythms 3: 49–58

    Article  PubMed  CAS  Google Scholar 

  37. Jeong, HJ, Kim, SK, Kim, JS, Kim, ST, Yoo, YD, Yoon, JY (2001) Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J Eukaryot Microbiol 48: 298–308

    Article  PubMed  CAS  Google Scholar 

  38. Jeong, HJ, Shim, JH, Kim, JS, Park, JY, Lee, CW, Lee, Y (1999) Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellates. Mar Ecol Prog Ser 176: 263–277

    Article  Google Scholar 

  39. Jeong, HJ, Yoon, JY, Kim, JS, Yoo, YD, Seong, KA (2002) Growth and grazing rates of the prostomatid ciliate Tiarina fusus on red-tide and toxic algae. Aquat Microb Ecol 28: 289–297

    Article  Google Scholar 

  40. Juhl, AR, Velazquez, V, Latz, MI (2000) Effect of growth conditions on flow-induced inhibition of population growth of a red-tide dinoflagellate. Limnol Oceanogr 45: 905–915

    Article  Google Scholar 

  41. Kahru, M, Mitchell, BG (1998) Spectral reflectance and absorption of a massive red tide off Southern California. J Geophys Res Oceans 103: 21601–21609

    Article  CAS  Google Scholar 

  42. Keller, DK, Selvin, RC, Claus, W, Guillard, RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23: 633–638

    Article  Google Scholar 

  43. Kirchman, DL, Yu, L, Fuchs, BM, Amann, R (2001) Structure of bacterial communities in aquatic systems as revealed by filter PCR. Aquat Microb Ecol 26: 13–22

    Article  Google Scholar 

  44. Kofoid, CA (1911) Dinoflagellata of the San Diego region. IV. The genus Gonyaulax, with notes on its skeletal morphology and a discussion of its generic and specific characters. Univ Calif Publ Zool 8: 187–286

    Google Scholar 

  45. LaJeunesse, TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol 37: 866–880

    Article  CAS  Google Scholar 

  46. Lewis, J, Hallett, R (1997) Lingulodinium polyedrum (Gonyaulax polyedra) a blooming dinoflagellate. Oceanogr Mar Biol: Annu Rev 35: 97–161

    Google Scholar 

  47. Medina, M, Collins, AG, Silberman, JD, Sogin, ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci U S A 98: 9707–9712

    Article  PubMed  CAS  Google Scholar 

  48. Medlin, L, Elwood, HJ, Stickel, S, Sogin, ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499

    Article  PubMed  CAS  Google Scholar 

  49. Medlin, L, Lange, M, Wellbrock, U, Donner, G, Elbrächter, M, Hummert, C, Luckas, B (1998) Sequence comparisons link toxic European isolates of Alexandrium tamarense from the Orkney Islands to toxic North American stocks. Eur J Protistol 34: 329–335

    Google Scholar 

  50. Mittag, M, Hastings, JW (1996) Exploring the signaling pathway of circadian bioluminescence. Physiol Plant 96: 727–732

    Article  CAS  Google Scholar 

  51. Moon-van der Staay, SY, De Wachter, R, Vaulot, D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607–610

    Article  PubMed  CAS  Google Scholar 

  52. Nicolas, M, Nicolas, G, Johnson, C, Bassot, J, Hastings, J (1987) Characterization of the bioluminescent organelles in Gonyaulax polyedra (dinoflagellates) after fast-freeze fixation and antiluciferase immunogold staining. J Cell Biol 105: 723–735

    Article  PubMed  CAS  Google Scholar 

  53. Park, JG, Jeong, MK, Lee, JA, Cho, KJ, Kwon, OS (2001) Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae Island, Korea. Phycologia 40: 292–297

    Article  Google Scholar 

  54. Paz, B, Riobo, P, Fernandez, AL, Fraga, S, Franco, JM (2004) Production and release of yessotoxins by the dinoflagellates Protoceratium reticulatum and Lingulodinium polyedrum in culture. Toxicon 44: 251–258

    Article  PubMed  CAS  Google Scholar 

  55. Penna, A, Magnani, M (1999) Identification of Alexandrium (Dinophyceae) species using PCR and rDNA-targeted probes. J Phycol 35: 615–621

    Article  CAS  Google Scholar 

  56. Persson, A (2000) Possible predation of cysts—A gap in the knowledge of dinoflagellate ecology. J Plankton Res 22: 803–809

    Article  Google Scholar 

  57. Rehnstam-Holm, AS, Godhe, A, Andersen, AM (2002) Molecular studies of Dinophysis (Dinophyceae) species from Sweden and North America. Phycologia 41: 348–357

    Article  Google Scholar 

  58. Reid, PC (1997) Discharges from hydroelectric power schemes as a trigger for marine algal blooms. Mar Pollut Bull 34: 730–733

    Article  CAS  Google Scholar 

  59. Roenneberg, T (1996) The complex circadian system of Gonyaulax polyedra. Physiol Plant 96: 733–737

    Article  CAS  Google Scholar 

  60. Rollo, F, Sassaroli, S, Boni, L, Marota, I (1995) Molecular typing of the red-tide dinoflagellate Gonyaulax polyedra in phytoplankton suspensions. Aquat Microb Ecol 9: 55–61

    Article  Google Scholar 

  61. Rubio, MB, Hermosa, MR, Keck, E, Monte, E (2005) Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb Ecol 49: 25 – 33

    Article  PubMed  CAS  Google Scholar 

  62. Saito, K, Drgon, T, Robledo, JAF, Krupatkina, DN, Vasta, GR (2002) Characterization of the rRNA locus of Pfiesteria piscicida and development of standard and quantitative PCR-based detection assays targeted to the nontranscribed spacer. Appl Environ Microbiol 68: 5394–5407

    Article  PubMed  CAS  Google Scholar 

  63. Scholin, CA, Hallegraeff, GM, Anderson, DM (1995) Molecular evolution of the Alexandrium tamarense “species complex” (Dinophyceae): Dispersal in the North American and West Pacific regions. Phycologia 34: 472–485

    Google Scholar 

  64. Scholin, CA, Marin, R, Miller, PE, Doucette, GJ, Powell, CL, Haydock, P, Howard, J, Ray, J (1999) DNA probes and a receptor-binding assay for detection of Pseudo-Nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. J Phycol 35: 1356–1367

    Article  CAS  Google Scholar 

  65. Smayda, TJ (1990) Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In: Granéli, E, Sundström, L, Edler, L, Anderson, DM (Eds.) Toxic Marine Phytoplankton. Elsevier. New York, pp 29–40

    Google Scholar 

  66. Smayda, TJ (1997) Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42: 1137–1153

    Article  Google Scholar 

  67. Smayda, TJ, Reynolds, CS (2001) Community assembly in marine phytoplankton: Application of recent models to harmful dinoflagellate blooms. J Plankton Res 23: 447–461

    Article  Google Scholar 

  68. Steidinger, KA, Tangen, A (1996) Dinoflagellates. In: Tomas, CR (Ed.) Identifying Marine Diatoms and Dinoflagellates. Academic Press. San Diego, CA, pp 387–584

    Chapter  Google Scholar 

  69. Stryer, L (1995) Genes for ribosomal RNAs are tandemly repeated several hundred times. In: Stryer, L (Ed.) Biochemistry. W.H. Freeman and Company. New York, NY, pp 992–993

    Google Scholar 

  70. Sullivan, JM, Swift, E, Donaghay, PL, Rines, JEB (2003) Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. Harmful Algae 2: 183–199

    Article  Google Scholar 

  71. Theaker, J (2004) Genotyping using MGB-hydrolysis probes. In: Bustin, SA (Ed.) A–Z of Quantitative PCR, 5. International University Line. La Jolla, CA, pp 733–765

    Google Scholar 

  72. Throndsen, J (1978) Preservation and storage. In: Sournia, A (Ed.) Phytoplankton Manual. UNESCO. Paris, pp 69–74

    Google Scholar 

  73. Torrey, HB (1902) An unusual occurrence of dinoflagellata on the California coast. Am Nat 36: 187–192

    Article  Google Scholar 

  74. Tubaro, A, Sidari, L, Della Loggia, R, Yasumoto, T (1998) Occurrence of yessotoxin-like toxins in phytoplankton and mussels from northern Adriatic Sea. In: Reguera, B, Blanco, J, Fernández, ML, Wyatt, T (Eds.) Harmful Algae. Xunta de Galicia and IOC-UNESCO. Santiago de Compostela, Spain, pp 470–472

    Google Scholar 

  75. Tyagi, S, Kramer, FR (1996) Molecular Beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14: 303–308

    Article  PubMed  CAS  Google Scholar 

  76. Villarino, ML, Figueiras, FG, Jones, KJ, Alvarezsalgado, XA, Richard, J, Edwards, A (1995) Evidence of in-situ diel vertical migration of a red-tide microplankton species in Ria de Vigo (Nw Spain). Mar Biol (N Y) 123: 607–617

    Google Scholar 

  77. Walsh, JJ, Kelley, JC, Whitledge, TE, MacIsaac, JJ, Huntsman, SA (1974) Spin-up of the Baja California upwelling ecosystem. Limnol Oceanogr 19: 553–572

    Article  CAS  Google Scholar 

  78. Weekers, PHH, Gast, RJ, Fuerst, PA, Byers, TJ (1994) Sequence variations in small-subunit ribosomal RNAs of Hartmannella vermiformis and their phylogenetic implications. Mol Biol Evol 11: 684–690

    PubMed  CAS  Google Scholar 

  79. Weiler, CS, Karl, DM (1979) Diel changes in phased-diving cultures of Ceratium furca (Dinophyceae): Nucleotide triphosphates, adenylate energy charge, cell carbon, and patterns of vertical migration. J Phycol 15: 384–391

    CAS  Google Scholar 

  80. Wilcox, RR (2003) Applying Contemporary Statistical Techniques Elsevier Science (USA). Academic Press. San Diego, USA

    Google Scholar 

  81. Yanisch-Perron, C, Vieira, J, Messing, J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. A. Schaffner, J. M. Rose, and A. Schnetzer (USC, Los Angeles) for helpful discussions and help with graphics and statistics, the Centre for Embedded Network Sensing (CENS) for providing the glass column for our laboratory work, and the Deutscher Akademischer Austauschdienst (DAAD) for their financial support. This project was additionally supported by National Science Foundation grants MCB-0084231, OPP-0125437, The Centre for Embedded Networked Sensing (CENS) under the NSF Cooperative Agreement CCR-0120778, and Environmental Protection Agency grant RD-83170501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie D. Moorthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moorthi, S.D., Countway, P.D., Stauffer, B.A. et al. Use of Quantitative Real-Time PCR to Investigate the Dynamics of the Red Tide Dinoflagellate Lingulodinium polyedrum . Microb Ecol 52, 136–150 (2006). https://doi.org/10.1007/s00248-006-9030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9030-3

Keywords

Navigation