Skip to main content

Regulation of Cell Division Cycles by Circadian Oscillators: Signal Transduction Between Clocks

  • Chapter
Physiology and Pharmacology of Biological Rhythms

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 125))

  • 238 Accesses

Abstract

An important consideration for maximizing the results of radio- and chemotherapy of mammalian cancers is that of host tolerance. It is unfortunate that in most of the earlier cancer work there is little mention of the role of rhythmic variations (particularly circadian periodicities) in the susceptibility of the whole organism to the toxicity of the drug(s) being utilized for treatment (chronotolerance). There now is abundant experimental evidence, however, that properly designed protocols (such as sinusoidally varying drug courses during the 24-h day) can dramatically enhance survival and cure rates by concomitantly maximizing the tolerance of the host to the drug through a temporal shielding of normal, healthy tissues (for recent reviews, see Lemmer 1989; Tourrou and Haus 1992; Chap. 11, this volume). Thus, “when” to treat must assume importance together with the “what” and “where” (Halberg 1975) — a concept embraced by the field of chronotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RW, Laval-Martin DL, Edmunds LN Jr (1985) Cell cycle oscillators: temperature compensation of the circadian rhythm of cell division in Euglena. Exp Cell Res 157: 144–158

    Article  PubMed  CAS  Google Scholar 

  • Baserga R (ed) (1971) The cell cycle and cancer. Dekker, New York

    Google Scholar 

  • Beavo JA (1988) Multiple isozymes of cyclic nucleotide phosphodiesterase. In: Greengard P, Robison GA (eds) Advances in second messenger and phosphoprotein research, vol 22. Raven, New York, pp 1–38

    Google Scholar 

  • Boynton AL, Whitfield JF (1983) The role of cyclic AMP in cell proliferation: a critical assessment of the evidence. Adv Cyclic Nucleotide Res 15: 193–294

    CAS  Google Scholar 

  • Buetow DE (ed) ( 1968a, ó, 1982) The biology of Euglena, vols I-III. Academic, New York

    Google Scholar 

  • Carell EF, Dearfield KL (1982) A relationship between adenosine 3’-5’-cyclic mono-phosphate levels and deoxyribonucleic acid synthesis in Euglena. Life Sci 31: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Carré IA, Edmunds LN Jr (1992) cAMP-dependent kinases in the algal flagellate Euglena gracilis. J Biol Chem 267: 2135–2137

    Google Scholar 

  • Carré IA, Edmunds LN Jr (1993) Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci 104: 1163–1173

    PubMed  Google Scholar 

  • Carré I, Oster AS, Laval-Martin DL, Edmunds LN Jr (1989a) Entrainment and phase shifting of the circadian rhythm of cell division by light in cultures of the achlorophyllous ZC mutant of Euglena gracilis. Curr Microbiol 19: 223–229

    Article  Google Scholar 

  • Carré I, Laval-Martin DL, Edmunds LN Jr (1989b) Circadian changes in cyclic AMP levels in synchronously dividing and stationary-phase cultures of the achlorophyllous ZC mutant of Euglena gracilis. J Cell Sci 94: 267–272

    Google Scholar 

  • Comolli J, Taylor W, Hastings JW (1994) An inhibitor of protein phosphorylation stops the circadian oscillator and blocks light-induced phase shifting in Gonyaulax polyedra. J Biol Rhythms 9: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Cook JR, James TW (1960) Light-induced division synchrony in Euglena gracilis var. bacillaris. Exp Cell Res 28: 524–530

    Article  Google Scholar 

  • Creanor J, Mitchison JM (1986) Nucleotide diphosphokinase, an enzyme with step changes in activity during the cell cycle of the fission yeast, Schizosaccharomyces pombe. J Cell Sci 86: 207–215

    PubMed  CAS  Google Scholar 

  • Cross F, Roberts J, Weintraub H (1989) Simple and complex cell cycles. Annu Rev Cell Biol 5: 341–395

    Article  PubMed  CAS  Google Scholar 

  • Dumont JE, Jauniaux J-C, Roger PP (1989) The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci 14: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Edery I, Zwiebel LJ, Dembinska ME, Rosbash M (1994) Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci USA 91: 2260–2264

    Article  PubMed  CAS  Google Scholar 

  • Edgar BA, O’Farrell PH (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57: 177–187

    Article  PubMed  CAS  Google Scholar 

  • Edmunds LN Jr (1965a) Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). I. Attainment and characterization of rhythmic cell division. J Cell Comp Physiol 66: 147–158

    Article  Google Scholar 

  • Edmunds LN Jr (1965b) Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). II. Patterns of biosynthesis during the cell cycle. J Cell Comp Physiol 66: 159–182

    Article  CAS  Google Scholar 

  • Edmunds LN Jr (1966) Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). III. Circadian components of cell division. J Cell Physiol 67: 35–44

    Article  PubMed  Google Scholar 

  • Edmunds LN Jr (1975) Temporal differentiation in Euglena: circadian phenomena in non-dividing populations and in synchronously dividing cells. In: Les cycles cellulaires et leur blocage chez plusieurs protistes. Centre National de la Recherche Scientifique, Paris, Colloques Intern du CNRS, no 240, pp 53–57

    Google Scholar 

  • Edmunds LN Jr (1978) Clocked cell cycle clocks: implications toward chronopharmacology and aging. In: Samis HV Jr, Capobianco S (eds) Aging and biological rhythms. Plenum, New York, pp 125–184 (Adv Exp Med Biol, vol 108 )

    Google Scholar 

  • Edmunds LN Jr (1982) Circadian and infradian rhythms. In: Buetow DE (ed) The biology of Euglena, vol III. Academic, New York, pp 53–142

    Google Scholar 

  • Edmunds LN Jr (ed) (1984) Cell cycle clocks. Dekker, New York

    Google Scholar 

  • Edmunds LN Jr (1988) Cellular and molecular bases of biological clocks. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edmunds LN Jr (1994) Clocks, cell cycles, cancer and aging: role of the adenylate cyclase-cyclic AMP-phosphodiesterase axis in signal transduction between circadian oscillator and cell division cycle. In: Pierpaoli W, Regelson W, Fabris N (eds) The aging clock: the pineal gland and other pacemakers in the progression of aging and carcinogenesis. The New York Academy of Sciences, New York, pp 77–96 (Ann NY Acad Sci, vol 719 )

    Google Scholar 

  • Edmunds LN Jr, Adams KJ (1981) Clocked cell cycle clocks. Science 211: 1002–1013

    Article  PubMed  CAS  Google Scholar 

  • Edmunds LN Jr, Funch RR (1969a) Circadian rhythm of cell division in Euglena: effects of a random illumination regimen. Science 165: 500–503

    Article  PubMed  Google Scholar 

  • Edmunds LN Jr, Funch R (1969b) Effects of `skeleton’ photoperiods and high frequency light-dark cycles on the rhythm of cell division in synchronized cultures of Euglena. Planta (Berl) 87: 134–163

    Article  Google Scholar 

  • Edmunds LN Jr, Halberg F (1981) Circadian time structure of Euglena: a model system amenable to quantification. In: Kaiser HE (ed) Neoplasms-comparative pathology of growth in animals, plants and man. Williams and Wilkins, Baltimore, pp 105–134

    Google Scholar 

  • Edmunds LN Jr, Laval-Martin DL (1984) Cell division cycles and circadian oscillators. In: Edmunds LN Jr (ed) Cell cycle clocks. Dekker, New York, pp 295–324

    Google Scholar 

  • Edmunds LN Jr, Mohabir G (1995) Circadian regulation of the cell division cycles in Euglena gracilis: role of reversible tyrosine phosphorylation in the timing of mitotic kinase activity. Abstracts, Am Physiol Soc Conf. Understanding the biological clock: from genetics to physiology, 8–12 July, Hanover, New Hampshire

    Google Scholar 

  • Edmunds LN Jr, Tamponnet C (1990) Oscillator control of cell division cycles in Euglena: role of calcium in circadian timekeeping. In: O’Day DH (ed) Calcium as an intracellular messenger in eucaryotic microbes. American Society for Microbiology, Washington, pp 97–123

    Google Scholar 

  • Edmunds LN Jr, Jay ME, Kohlmann A, Liu SC, Merriam VH, Sternberg H (1976) The coupling effects of some thiol and other sulfur-containing compounds on the circadian rhythm of cell division in photosynthetic mutants of Euglena. Arch Microbiol 198: 1–8

    Article  Google Scholar 

  • Edmunds LN Jr, Tay DE, Laval-Martin DL (1982) Cell division cycles and circadian clocks: phase response curve for light perturbations in synchronous cultures of Euglena. Plant Physiol 70: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Eskin A, Corrent G, Lin C-Y, McAdoo DJ (1982) Mechanism for shifting the phase of a circadian rhythm by serotonin: involvment of cAMP. Proc Natl Acad Sci USA 79: 660–664

    Article  PubMed  CAS  Google Scholar 

  • Félix M-A, Labbé J-C, Dorée M, Hunt T, Karsenti E (1990) Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 346: 379–386

    Article  PubMed  Google Scholar 

  • Goldberg ND, Haddox MK, Dunham E, Lopez C, Hadden JW (1974) The Yin Yang hypothesis of biological control: opposing influences of cyclic GMP and cyclic AMP in the regulation of cell proliferation and other biological processes. In: Clarkson B, Baserga R (eds) Control of proliferation in animal cells. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 609–625

    Google Scholar 

  • Halberg F (1975) When to treat. Indian J Cancer 12: 1–20

    CAS  Google Scholar 

  • Hohmann P, DenHaese G, Greene RS (1993) Mitotic CDC2 kinase is negatively regulated by cAMP-dependent protein kinase in mouse fibroblast cell free extracts. Cell Prolif 26: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Homma K, Hastings JW (1989) The S phase is discrete and is controlled by the circadian clock in the marine dinoflagellate Gonyaulax polyedra. Exp Cell Res 182: 635–644

    Article  PubMed  CAS  Google Scholar 

  • Izumi T, Walker DH, Mailer JL (1992) Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol Biol Cell 3: 927–939

    PubMed  CAS  Google Scholar 

  • Jarrett RM, Edmunds LN Jr (1970) Persisting circadian rhythm of cell division in a photosynthetic mutant of Euglena. Science 167: 1730–1733

    Article  PubMed  CAS  Google Scholar 

  • Jessus C, Beach D (1992) Oscillation of MPF is accompanied by periodic association between cdc25 and cdc2-cyclin B. Cell 68: 323–332

    Article  PubMed  CAS  Google Scholar 

  • John PCL, Sek FJ, Lee MG (1989) A homolog of the cell cycle control protein p34cdc2 participates in the division cycle of Chlamydomonas, and a similar protein is detectable in higher plants and remote taxa. Plant Cell 1: 1185–1193

    PubMed  CAS  Google Scholar 

  • John PCL, Zhang K, Dong C, Diederich L, Wightman F (1993) p34cdc2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development, and stimulation of division by auxin and cytokinin Aust J Plant Physiol 20: 503–526

    Google Scholar 

  • Krucher NA, Roberts MH (1994) Identification of cdk-like proteins in the eye and brain of the marine snail, Bulla gouldiana. Abstracts, Fourth Meeting of the Society for Research on Biological Rhythms, 4–8 May 1994, Amelia Island, Jacksonville, no 128, p 96

    Google Scholar 

  • Ledoigt G, Calvayrac R (1979) Phénomènes périodiques, métaboliques et structuraux chez un protiste, Euglena gracilis. J Protozool 26: 632–643

    PubMed  CAS  Google Scholar 

  • Lemmer B (ed) (1989) Chronopharmacology: cellular and biochemical interactions. Dekker, New York

    Google Scholar 

  • Lemmer B, Bissinger H, Lang PH (1986) Effect of forskolin on cAMP levels in rat heart at different times of day. IRCS Med Sci 14: 1103–1104

    CAS  Google Scholar 

  • Lewin B (1990) Driving the cell cycle: M phase kinase, its partners, and substrates. Cell 61: 743–752

    Article  PubMed  CAS  Google Scholar 

  • Malinowski JR, Laval-Martin DL, Edmunds LN Jr (1985) Circadian oscillators, cell cycles, and singularities: light perturbation of the free-running rhythm of cell division in Euglena. J Comp Physiol B 155: 257–267

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983) Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent kinase. Exp Cell Res 146: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Nurse P, Russell P (1990) Regulation of mitosis by cyclic accumulation of p80°“25 mitotic inducer in fission yeast. Nature 344: 549–552

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Hunt T (1993) The cell cycle: an introduction. Freeman, New York Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339: 275–280

    Article  Google Scholar 

  • Novak B, Mitchison JM (1986) Changes in CO2 production in synchronous cultures of the fission yeast Schizosaccharomyces pombe: a periodic cell cycle event that persists after the DNA-division cycle has been blocked. J Cell Sci 86: 191–206

    PubMed  CAS  Google Scholar 

  • Prosser RA, Gillette MU (1989) The mammalian circadian clock in the suprachiasmatic nuclei is reset in vitro by cAMP. J Neurosci 9: 1073–1081

    PubMed  CAS  Google Scholar 

  • Roberts MH, Towles JA, Leader NK (1992) Tyrosine kinase regulation of a molluscan circadian clock. Brain Res 592: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Scheving LE, Tsai T-H, Feuers RJ, Scheving LA (1989) Cellular mechanisms involved in the action of anticancer drugs. In: Lemmer B (ed) Chronopharmacology: cellular and biochemical interactions. Dekker, New York, pp 317–369

    Google Scholar 

  • Terry OW, Edmunds LN Jr (1970a) Phasing of cell division by temperature cycles in Euglena cultured autotrophically under continuous illumination. Planta (Berl) 93: 106–127

    Article  Google Scholar 

  • Terry OW, Edmunds LN Jr (1970b) Rhythmic settling induced by temperature cycles in continuously-stirred autotrophic cultures of Euglena gracilis ( Z strain ). Planta (Berl) 93: 128–142

    Google Scholar 

  • Tong J, Edmunds LN Jr (1993) Role of cyclic GMP in the mediation of circadian rhythmicity of the adenylate cyclase-cyclic AMP-phosphodiesterase system in Euglena. Biochem Pharmacol 45: 2087–2091

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Carré IA, Edmunds LN Jr (1991) Circadian rhythmicity in the activities of adenylate cyclase and phosphodiesterase in synchronously dividing and stationary-phase cultures of the achlorophyllous ZC mutant of Euglena. J Cell Sci 100: 365369

    Google Scholar 

  • Touitou Y, Haus E (eds) (1992) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Whitfield JF (1990) Calcium, cell cycles, and cancer. CRC Press, Boca Raton Whitfield JF, Durkin JP, Franks DJ, Kleine LP, Raptis L, Rixon RH, Sikorska M, Roy

    Google Scholar 

  • Walker P (1987) Calcium, cyclic AMP and protein kinase C- partners in mitogenesis. Cancer Metastasis Rev 5: 205–250

    Article  PubMed  Google Scholar 

  • Zatz M (1992) Does the circadian pacemaker act through cyclic AMP to drive the melatonin rhythm in chick pineal cells? J Biol Rhythms 7: 301–311

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edmunds, L.N. (1997). Regulation of Cell Division Cycles by Circadian Oscillators: Signal Transduction Between Clocks. In: Redfern, P.H., Lemmer, B. (eds) Physiology and Pharmacology of Biological Rhythms. Handbook of Experimental Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09355-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09355-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08265-8

  • Online ISBN: 978-3-662-09355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics