Skip to main content
Log in

Effects of “skeleton” photoperiods and high frequency light-dark cycles on the rhythm of cell division in synchronized cultures of Euglena

  • Published:
Planta Aims and scope Submit manuscript

Summary

Two further lines of evidence support the contention (Edmunds, 1966) that the cell cycle in autotrophically grown Euglena can be coupled to an endogenous, circadian biological clock under certain conditions. So-called “skeleton” photoperiods (LD: 3,6,3:12 and LD: 4,4,4:12) following a complete photoperiod regime entrain the cell division rhythm in the population to a precise 24 hr period, although the step-sizes of the successive fission bursts are always less than 2.00, indicating that not all cells divide in any one 24 hr interval. These findings imply that the continuous action of light is not required for synchronization and suggest that the putative oscillation underlying the rhythm can be phased by discrete light (or dark) “pulses” or signals.

The effects of high frequency LD cycles whose periods were integral submultiples of 24 hr were also investigated. In most regimes (LD:1/4,1/2; LD:1/2,1; LD: 1,2; LD: 1,3; LD: 2,4; LD: 2,6; LD: 4,4) synchronous cell division iccurred in the culture with an average period of 26–27 hr, although only a fraction of the cells divided during any one burst. Similar results were obtained if (i) a synchronized culture was exposed to certain high frequency cycles whose periods were not integral submultiples of 24 hr (e.g., LD: 5,5 or LD: 8,8); (ii) an asynchronous culture (grown in LL) was subsequently exposed to a high frequency cycle; or (iii) a synchronized culture was subjected to a “random” LD cycle. The synchrony does not break down as long as the given LD regime is imposed and shows some indications of persistence in certain ensuing conditions of continuous illumination.

A general formula was derived which predicts the time of division, t D , for an individual cell: t D =k+nτ, where k is the initial phase delay, n is an integer, and τ is the free-running period of the rhythm observed in the population. These results are interpreted as indicating that the high frequency cycles employed were unable to entrain the circadian oscillation(s) hypothesized to underly and gate cell division, with the result that the rhythm reverted to its free-running period. Exposure to such cycles, however, apparently either initiates a rhythm or synchronizes the phases of the individual oscillations in the populations of cells. The possible direct interaction between energy supply and the observed somewhat variable period lengths is discussed; also, the relevance of stochastic models for the decay of division synchrony in the absence of a recurrent synchronizing procedure is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschoff, J., K. Klotter, and R. Wever: Circadian vocabulary. In: Circadian clocks (J. Aschoff, ed.), p. x-xix. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Brinkmann, K.: Temperatureinflüsse auf die circadiane Rhythmik von Euglena gracilis bei Mixotrophie und Autotrophie. Planta (Berl.) 70, 344–389 (1966).

    Google Scholar 

  • Bruce, V. G.: Environmental entrainment of circadian rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 371–378 (1960).

    Google Scholar 

  • —: Cell division rhythms and the circadian clock. In: Circadian clocks (J. Aschoff, ed.), p. 125–138. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Bruce, V. G.: The circadian clock in Chlamydomonas — clock control of the cell cycle. (Personal communication and preprint. 1968.)

  • —, and C. S. Pittendrigh: Resetting the Euglena clock with a single light stimulus. Amer. Natur. 92, 295–306 (1958).

    Google Scholar 

  • Bühnemann, F.: Die rhythmische Sporenbildung von Oedogonium cardiacum Wittr. Biol. Zbl. 74, 1–54 (1955).

    Google Scholar 

  • Bünning, E.: Endogenous diurnal cycles of activity in plants. In: Rhythmic and synthetic processes in growth (D. Rudnick, ed.), p. 111–126. Princeton: Princeton Univ. Press 1957.

    Google Scholar 

  • Bünsow, R.: Endogene Tagesrhythmik und Photoperiodismus bei Kalanchoë blossfeldiana. Planta (Berl.) 42, 220–252 (1953).

    Google Scholar 

  • Cook, J. R., and B. Cook: Effect of nutrients on the variation of individual generation times. Exp. Cell Res. 28, 524–530 (1962).

    Google Scholar 

  • —, and T. W. James: Light-induced division synchrony in Euglena gracilis var. bacillaris. Exp. Cell Res. 21, 583–589 (1960).

    Google Scholar 

  • Edmunds, L. N., Jr.: Replication of DNA and cell division in synchronously dividing cultures of Euglena gracilis. Science 145, 266–268 (1964).

    Google Scholar 

  • —: Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). I. Attainment and characterization of rhythmic cell division. J. cell. comp. Physiol. 66, 147–158 (1965a).

    Google Scholar 

  • —: Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). II. Patterns of biosynthesis during the cell cycle. J. cell. comp. Physiol. 66, 159–182 (1965b).

    Google Scholar 

  • —: Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). III. Circadian components of cell division. J. Cell Physiol. 67, 35–44 (1966).

    Google Scholar 

  • Engelberg, J.: The decay of synchronization of cell division. Exp. Cell Res. 36, 647–662 (1964).

    Google Scholar 

  • Feldman, J. F.: Circadian rhythmicity in amino acid incorporation in Euglena gracilis. Science 160, 1454–1456 (1968).

    Google Scholar 

  • Flügel, A.: Die Gesetzmäßigkeiten der endogenen Tagesrhythmik. Planta (Berl.) 37, 337–375 (1949).

    Google Scholar 

  • Goodwin, B. C.: An entrainment model for timed enzyme syntheses in bacteria. Nature (Lond.) 209, 479–481 (1966).

    Google Scholar 

  • Harker, J.: The effects of a biological clock on the developmental rate of Drosophila pupae. J. exp. Biol. 42, 323–337 (1965).

    Google Scholar 

  • Hastings, J. W., and B. M. Sweeney: The Gonyaulax clock. In: Photoperiodism and related phenomena in plants and animals (R. B. Withrow, ed.), p. 567–584. Washington: Amer. Assoc. Advanc. Sci. 1959.

    Google Scholar 

  • ——: Phased cell division in the marine dinoflagellates. In: Synchrony in cell division and growth (E. Zeuthen, ed.), p. 307–321. New York: Interscience Publ. 1964.

    Google Scholar 

  • Heckrotte, C.: Random light and wheel running. Science 154, 158–159 (1966).

    Google Scholar 

  • Holmquest, D. L., K. Retiene, and H. S. Lipscomb: Circadian rhythms in rats: effects of random lighting. Science 152, 662–664 (1966).

    Google Scholar 

  • Ingold, C. T., and V. J. Cox: Periodicity of spore discharge in Daldinia. Ann. Bot. (Lond.) 19, 201–209 (1955).

    Google Scholar 

  • Kleinhoonte, A.: Über die durch das Licht regulierten autonomen Bewegungen der Canavalia-Blätter. Arch. néerl. Sci. exp. nat. IIIb 5, 1–100 (1929).

    Google Scholar 

  • Petropulos, S. F.: Physiological basis of synchronous division in Euglena gracilis Ph. D. Thesis, Princeton University (1963).

  • —: Automatic sampling device for study of synchronized cultures of microorganisms. Science 145, 268–270 (1964).

    Google Scholar 

  • Pirson, A., and H. Lorenzen: Ein endogener Zeitfaktor bei der Teilung von Chlorella. Z. Bot. 46, 53–66 (1958).

    Google Scholar 

  • Pittendrigh, C. S.: On the mechanism of the entrainment of a circadian rhythm by light cycles. In: Circadian clocks (J. Aschoff, ed.), p. 277–297, Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • —: The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Z. Pflanzenphysiol. 54, 275–307 (1966).

    Google Scholar 

  • —, and V. G. Bruce: Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. In: Photoperiodism and related phenomena in plants and animals (R. B. Withrow, ed.), p. 475–505. Washington: Amer. Assoc. Advanc. Sci. 1959.

    Google Scholar 

  • Schnabel, G.: Der Einfluß von Licht auf die circadiane Rhythmik von Euglena gracilis bei Autotrophie und Mixotrophie. Planta (Berl.) 81, 49–63 (1968).

    Google Scholar 

  • Skopik, S. D.: Temporal order in the development of Drosophila pupae. Ph. D. Thesis, Princeton University (1966).

  • —, and C. S. Pittendrigh: Circadian systems, II. The oscillation in the individual Drosophila pupa; its independence of developmental stage. Proc. natl. Acad. Sci. (Wash.) 58, 1862–1869 (1967).

    Google Scholar 

  • Sweeney, B. M., and J. W. Hastings: Rhythmic cell division in populations of Gonyaulax polyedra. J. Protozool. 5, 217–224 (1958).

    Google Scholar 

  • Terry, O., and L. N. Edmunds, Jr.: Effect of 24-hr temperature cycles on cell division and motility in autotrophic Euglena cultures. (In preparation.)

  • Uebelmesser, E. R.: Über den endonomen Rhythmus der Sporangienträger-Bildung von Pilobolus. Arch. Mikrobiol. 20, 1–33 (1954).

    Google Scholar 

  • Volm, M.: Die Tagesperiodik der Zellteilung von Paramecium bursaria. Z. vergl. Physiol. 48, 157–180 (1964).

    Google Scholar 

  • Walther, W., and L. N. Edmunds, Jr.: Rhythm of photosynthetic capacity during the cell cycle of synchronously dividing Euglena. (In preparation.)

  • Wilkins, M. B.: The effect of light upon plant rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 115–129 (1960).

    Google Scholar 

  • Wille, J. J., and C. F. Ehret: Light synchronization of an endogenous circadian rhythm of cell division in Tetrahymena. J. Protozool. 15, 785–788 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Some of these results were initially reported at the 5th International Congress on Photobiology, Hanover, N.H., U.S.A., August 26–31, 1968.

This work was supported by NSF research grants #GB-4140 and #GB-6892 to L. Edmunds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edmunds, L.N., Funch, R. Effects of “skeleton” photoperiods and high frequency light-dark cycles on the rhythm of cell division in synchronized cultures of Euglena . Planta 87, 134–163 (1969). https://doi.org/10.1007/BF00386972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386972

Keywords

Navigation