Skip to main content

A User’s Guide to Optimal Transport

  • Chapter
  • First Online:
Modelling and Optimisation of Flows on Networks

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2062))

Abstract

This text is an expanded version of the lectures given by the first author in the 2009 CIME summer school of Cetraro. It provides a quick and reasonably account of the classical theory of optimal mass transportation and of its more recent developments, including the metric theory of gradient flows, geometric and functional inequalities related to optimal transportation, the first and second order differential calculus in the Wasserstein space and the synthetic theory of metric measure spaces with Ricci curvature bounded from below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here c − c stands for “convex minus convex” and has nothing to do with the c we used to indicate the cost function.

  2. 2.

    If closed balls in X are compact, the proof greatly simplifies. Indeed in this case the inequality \({R}^{2}\mu (X \setminus {B}_{R}({x}_{0})) \leq \int {d}^{2}(\cdot ,{x}_{0})d\mu \) and the uniform bound on the second moments yields that the sequence \(n\mapsto {\mu }_{n}\) is tight. Thus to prove narrow convergence it is sufficient to check that \(\int fd{\mu }_{n} \rightarrow \int fd\mu \) for every \(f \in {C}_{c}(X)\). Since Lipschitz functions are dense in C c (X) w.r.t. uniform convergence, it is sufficient to check the convergence of the integral only for Lipschitz f’s. This follows from the inequality

    $$\begin{array}{rcl} \left \vert \int fd\mu -\int fd{\mu }_{n}\right \vert & =& \left \vert \int f(x) - f(y)d{\gamma }_{n}(x,y)\right \vert \leq \int \vert f(x) - f(y)\vert d{\gamma }_{n}(x,y) \\ & \leq &\mathrm{Lip}(f) \int d(x,y)d{\gamma }_{n}(x,y) \leq \mathrm{ Lip}(f)\sqrt{\int {d}^{2}(x,y)d{\gamma }_{n}(x,y)} \\ & =& \mathrm{Lip}(f){W}_{2}(\mu ,{\mu }_{n}).\end{array}$$
  3. 3.

    Again, if closed balls in X are compact the argument simplifies. Indeed from the uniform bound on the second moments and the inequality \({R}^{2}\mu (X \setminus {B}_{R}({x}_{0})) \leq \int\limits_{X\setminus {B}_{R}({x}_{0})}{d}^{2}(\cdot ,{x}_{0})d\mu \) we get the tightness of the sequence. Hence up to pass to a subsequence we can assume that (μ n ) narrowly converges to a limit measure μ, and then using the lower semicontinuity of W 2 w.r.t. narrow convergence we can conclude \({\overline{\lim }}_{n}{W}_{2}(\mu ,{\mu }_{n}) \leq {\overline{\lim }}_{n}{\underline{\lim }}_{m}{W}_{2}({\mu }_{m},{\mu }_{n}) = 0\).

  4. 4.

    As for Theorem 3.7 everything is simpler if closed balls in X are compact. Indeed, observe that a geodesic connecting two points in \({B}_{R}({x}_{0})\) lies entirely on the compact set \(\overline{{B}_{2R}({x}_{0})}\), and that the set of geodesics lying on a given compact set is itself compact in \(\mathrm{Geod}(X)\), so that the tightness of (μn) follows directly from the one of \(\{{\mu }_{0},{\mu }_{1}\}\).

  5. 5.

    The assumption \(\lambda \geq 0\) is necessary to have the last inequality in (82). If λ < 0, λ − convexity of \(\mathcal{V}\) along interpolating curves is not anymore true, so that we cannot apply directly the results of Sect. 4.2.4. Yet, adapting the arguments, it possible to show that all the results which we will present hereafter are true for general \(\lambda \in \mathbb{R}\).

References

  1. A. Agrachev, P. Lee, Optimal transportation under nonholonomic constraints. Trans. Am. Math. Soc. 361, 6019–6047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Alberti, On the structure of singular sets of convex functions. Calc. Var. Partial Differ. Equat. 2, 17–27 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Alberti, L. Ambrosio, A geometrical approach to monotone functions in \({\mathbf{R}}^{n}\). Math. Z. 230, 259–316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Ambrosio, Lecture notes on optimal transport problem, in Mathematical Aspects of Evolving Interfaces, vol. 1812, ed. by P. Colli, J. Rodrigues. CIME summer school in Madeira (Pt) (Springer, Berlin, 2003), pp. 1–52

    Google Scholar 

  5. L. Ambrosio, N. Gigli, Construction of the parallel transport in the Wasserstein space. Meth. Appl. Anal. 15, 1–29 (2008)

    MathSciNet  MATH  Google Scholar 

  6. L. Ambrosio, S. Rigot, Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208, 261–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Ambrosio, N. Gigli, G. Savaré, in Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Lectures in Mathematics ETH Zürich (Birkhäuser, Basel, 2008)

    Google Scholar 

  8. L. Ambrosio, N. Gigli, G. Savaré, Calculus and heat flows in metric measure spaces with ricci curvature bounded below, Comm. Pure and Applied Math. (2011)

    Google Scholar 

  9. L. Ambrosio, N. Gigli, G. Savaré, Spaces with riemannian ricci curvature bounded below, Comm. Pure and Applied Math. (2011)

    Google Scholar 

  10. L. Ambrosio, B. Kirchheim, A. Pratelli, Existence of optimal transport maps for crystalline norms. Duke Math. J. 125 207–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Bacher, K.T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259, 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.-D. Benamou, Y. Brenier, A numerical method for the optimal time-continuous mass transport problem and related problems, in Monge Ampère Equation: Applications to Geometry and Optimization (Deerfield Beach, FL, 1997). Contemporary Mathematics, vol. 226 (American Mathematical Society, Providence, 1999), pp. 1–11

    Google Scholar 

  13. P. Bernard, B. Buffoni, Optimal mass transportation and Mather theory. J. Eur. Math. Soc. (JEMS), 9, 85–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Bernot, V. Caselles, J.-M. Morel, The structure of branched transportation networks. Calc. Var. Partial Differ. Equat. 32, 279–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Bianchini, A. Brancolini, Estimates on path functionals over Wasserstein spaces. SIAM J. Math. Anal. 42, 1179–1217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Brancolini, G. Buttazzo, F. Santambrogio, Path functionals over Wasserstein spaces. J. Eur. Math. Soc. (JEMS), 8, 415–434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Brasco, G. Buttazzo, F. Santambrogio, A Benamou-Brenier approach to branched transport. SIAM J. Math. Anal. 43(2), 1023–1040 (2011). doi:10.1137/10079286X

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris I Math. 305, 805–808 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Burago, Y. Burago, S. Ivanov, in A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  21. L.A. Caffarelli, Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math. 45, 1141–1151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.A. Caffarelli, The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. L.A. Caffarelli, Boundary regularity of maps with convex potentials, II. Ann. Math. (2) 144, 453–496 (1996)

    Google Scholar 

  24. L.A. Caffarelli, M. Feldman, R.J. McCann, Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Am. Math. Soc. 15, 1–26 (2002) (electronic)

    Google Scholar 

  25. L. Caravenna, A proof of Sudakov theorem with strictly convex norms. Math. Z. 268(1–2), 371–407 (2011) doi:10.1007/s00209-010-0677-6

    Article  MathSciNet  MATH  Google Scholar 

  26. J.A. Carrillo, S. Lisini, G. Savaré, D. Slepcev, Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258, 1273–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Champion, L. De Pascale, The Monge problem in \({\mathbb{R}}^{d}\). Duke Math. J. 157(3), 551–572 (2011). doi:10.1215/00127094-1272939

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Champion, L. De Pascale, The Monge problem for strictly convex norms in \({\mathbb{R}}^{d}\). J. Eur. Math. Soc. (JEMS), 12, 1355–1369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Dellacherie, P.-A. Meyer, in Probabilities and Potential. North-Holland Mathematics Studies, vol. 29 (North-Holland, Amsterdam, 1978)

    Google Scholar 

  32. Q. Deng, K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, II. J. Funct. Anal. 260(12), 3718–3725 (2011). doi:10.1016/j.jfa.2011.02.026

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Dolbeault, B. Nazaret, G. Savaré, On the Bakry-Emery criterion for linear diffusions and weighted porous media equations. Comm. Math. Sci 6, 477–494 (2008)

    MATH  Google Scholar 

  34. L.C. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, viii+66 (1999)

    Google Scholar 

  35. A. Fathi, A. Figalli, Optimal transportation on non-compact manifolds. Isr. J. Math. 175, 1–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Feyel, A.S. Üstünel, Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theor. Relat. Fields 128, 347–385 (2004)

    Article  MATH  Google Scholar 

  37. A. Figalli, N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. J. Math. Pures Appl. (9), 94(2), 107–130 (2010). doi:10.1016/j.matpur.2009.11.005

    Google Scholar 

  38. A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182, 167–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Figalli, L. Rifford, Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 20, 124–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168, 941–980 (2008)

    Google Scholar 

  41. W. Gangbo, The Monge mass transfer problem and its applications, in Monge Ampère Equation: Applications to Geometry and Optimization, (Deerfield Beach, FL, 1997). Contemporary Mathematics, vol. 226 (American Mathematical Society, Providence, 1999), pp. 79–104

    Google Scholar 

  42. W. Gangbo, R.J. McCann, The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. N. Gigli, On the geometry of the space of probability measures in R n endowed with the quadratic optimal transport distance, Thesis (Ph.D.)–Scuola Normale Superiore, 2008

    Google Scholar 

  44. N. Gigli, Second order analysis on \(({P}_{2}(M),{W}_{2})\). Memoir. Am. Math. Soc. 216(1018), xii+154 (2012). doi:10.1090/S0065-9266-2011-00619-2

    Google Scholar 

  45. N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Partial Differential Equations 39(1–2), 101–120 (2010). doi:10.1007/s00526-009-0303-9

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Gigli, On the inverse implication of Brenier-McCann theorems and the structure of \(({P}_{2}(M),{W}_{2})\). Methods Appl. Anal. 18(2), 127–158 (2011)

    MathSciNet  Google Scholar 

  47. R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998) (electronic)

    Google Scholar 

  48. N. Juillet, On displacement interpolation of measures involved in Brenier’s theorem. Proc. Am. Math. Soc. 139(10), 3623–3632 (2011). doi:10.1090/S0002-9939-2011-10891-8

    Article  MathSciNet  MATH  Google Scholar 

  49. L.V. Kantorovich, On an effective method of solving certain classes of extremal problems. Dokl. Akad. Nauk. USSR 28, 212–215 (1940)

    Google Scholar 

  50. L.V. Kantorovich, On the translocation of masses. Dokl. Akad. Nauk. USSR 37, 199–201 (1942). English translation in J. Math. Sci. 133(4), 1381–1382 (2006)

    Google Scholar 

  51. L.V. Kantorovich, G.S. Rubinshtein, On a space of totally additive functions. Vestn. Leningr. Univ. 7(13), 52–59 (1958)

    Google Scholar 

  52. M. Knott, C.S. Smith, On the optimal mapping of distributions. J. Optim. Theor. Appl. 43, 39–49 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Kuwada, N. Gigli, S.-I. Ohta, Heat flow on alexandrov spaces, Comm. Pure and Applied Math. (2010)

    Google Scholar 

  54. S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differ. Equat. 28, 85–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. G. Loeper, On the regularity of solutions of optimal transportation problems. Acta Math. 202, 241–283 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. J. Lott, Some geometric calculations on Wasserstein space. Comm. Math. Phys. 277, 423–437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Lott, C. Villani, Weak curvature conditions and functional inequalities. J. Funct. Anal. 245(1), 311–333 (2007). doi:10.1016/j.jfa.2006.10.018

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(2), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. X.-N. Ma, N.S. Trudinger, and X.-J. Wang, Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177, 151–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. F. Maddalena, S. Solimini, Transport distances and irrigation models. J. Convex Anal. 16, 121–152 (2009)

    MathSciNet  MATH  Google Scholar 

  61. F. Maddalena, S. Solimini, J.-M. Morel, A variational model of irrigation patterns. Interfaces Free Bound. 5, 391–415 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. R.J. Mccann, A convexity theory for interacting gases and equilibrium crystals. Ph.D. Thesis, Princeton University. ProQuest LLC, Ann Arbor (1994)

    Google Scholar 

  63. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  64. R.J. McCann, Polar factorization of maps on riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. V.D. Milman, G. Schechtman, in Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986). With an appendix by M. Gromov

    Google Scholar 

  66. G. Monge, Mémoire sur la théorie des d’eblais et des remblais. Histoire de lÕAcadémie Royale des Sciences de Paris (1781), pp. 666–704

    Google Scholar 

  67. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equat. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Pratelli, On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation. Ann. l’Institut Henri Poincare B Probab. Stat. 43, 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. S.T. Rachev, L. Rüschendorf, Mass Transportation Problems, vol. I. Probability and Its Applications (Springer, New York, 1998), pp. xxvi+508 (Theory)

    Google Scholar 

  70. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  71. L. Rüschendorf, S.T. Rachev, A characterization of random variables with minimum L 2-distance. J. Multivariate Anal. 32, 48–54 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  72. G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Math. Acad. Sci. Paris 345, 151–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Savaré, Gradient flows and evolution variational inequalities in metric spaces (2010) (in preparation)

    Google Scholar 

  74. K.-T. Sturm, On the geometry of metric measure spaces, I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. K.-T. Sturm, On the geometry of metric measure spaces, II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. K.-T. Sturm, M.-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58, 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. V.N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math. (2), i–v, 1–178 (1979) (Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976))

    Google Scholar 

  78. N.S. Trudinger, X.-J. Wang, On the Monge mass transfer problem. Calc. Var. Partial Differ. Equat. 13, 19–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  79. C. Villani, in Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, 2003)

    Google Scholar 

  80. C. Villani, Optimal Transport, Old and New (Springer, Berlin, 2008)

    Google Scholar 

  81. Q. Xia, Optimal paths related to transport problems. Comm. Contemp. Math. 5, 251–279 (2003)

    Article  MATH  Google Scholar 

  82. Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Equat. 20, 283–299 (2004)

    Article  MATH  Google Scholar 

  83. L. Zají ̌cek, On the differentiability of convex functions in finite and infinite dimensional spaces. Czechoslovak Math. J. 29, 340–348 (1979)

    Google Scholar 

Download references

Acknowledgements

Work partially supported by a MIUR PRIN2008 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ambrosio, L., Gigli, N. (2013). A User’s Guide to Optimal Transport. In: Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics(), vol 2062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32160-3_1

Download citation

Publish with us

Policies and ethics