Skip to main content
Log in

Some Geometric Calculations on Wasserstein Space

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We compute the Riemannian connection and curvature for the Wasserstein space of a smooth compact Riemannian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gangbo, W.: Hamiltonian ODE’s in the Wasserstein space of probability measures. to appear, Comm. Pure Applied Math., DOI: 10.1002/cpa.20188 http://www.math.gatech.edu/~gangbo/publications/

  2. Ambrosio, L., Gigli, N., Savarè, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Basel: Birkhaüser, 2005

  3. Carrillo J.A., McCann R.J., Villani C. (2006). Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Rat. Mech. Anal. 179: 217–263

    Article  MATH  MathSciNet  Google Scholar 

  4. Gangbo, W., Nguyen, T., Tudorascu, A.: Euler-Poisson systems as action-minimizing paths in the Wasserstein space Preprint, 2006

  5. Gangbo, W., Pacini, T.: Infinite dimensional Hamiltonian systems in terms of the Wasserstein distance. Work in progress

  6. Kirillov A. (1976). Local Lie algebras. Usp Mat. Nauk 31: 57–76

    MATH  MathSciNet  Google Scholar 

  7. Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs 53, Providence, RI: Amer. Math. Soc., 1997

  8. Lott, J., Villani, C.: Ricci curvature for metric-measure space via optimal transport. To appear, Ann. of Math., available at http://www.arxiv.org/abs/math.DG/0412127, 2004

  9. Lott J., Villani C. (2007). Weak curvature conditions and functional inequalities. J. of Funct. Anal. 245: 311–333

    Article  MATH  MathSciNet  Google Scholar 

  10. Marsden J., Weinstein A. (1982). The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 4: 394–406

    Article  MathSciNet  Google Scholar 

  11. Marsden, J., Ratiu, T., Schmid, R., Spencer, R., Weinstein, A.: Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. In: Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, vol. I (Torino, 1982), Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117, suppl. 1, 289–340 (1983)

  12. McCann R. (2001). Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11: 589–608

    Article  MATH  MathSciNet  Google Scholar 

  13. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Second edition, Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1998

  14. Ohta, S.: Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Preprint, http://www.math.kyoto-u.ac.jp/~sohta/, 2006

  15. Otsu Y., Shioya T. (1994). The Riemannian structure of Alexandrov spaces. J. Diff. Geom. 39: 629–658

    MATH  MathSciNet  Google Scholar 

  16. Otto F. (2001). The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26: 101–174

    Article  MATH  MathSciNet  Google Scholar 

  17. Otto F., Villani C. (2000). Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173: 361–400

    Article  MATH  MathSciNet  Google Scholar 

  18. Perelman, G.: DC structure on Alexandrov space. Unpublished preprint

  19. Sturm K.-T. (2006). On the geometry of metric measure spaces I. Acta Math. 196: 65–131

    Article  MATH  MathSciNet  Google Scholar 

  20. Sturm K.-T. (2006). On the geometry of metric measure spaces II. Acta Math. 196: 133–177

    Article  MATH  MathSciNet  Google Scholar 

  21. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics 58, Providence, RI: Amer. Math. Soc., 2003

  22. Weinstein A. (1983). Hamiltonian structure for drift waves and geostrophic flow. Phys. Fluids 26: 388–390

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lott.

Additional information

Communicated by P. Constantin

This research was partially supported by NSF grant DMS-0604829.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lott, J. Some Geometric Calculations on Wasserstein Space. Commun. Math. Phys. 277, 423–437 (2008). https://doi.org/10.1007/s00220-007-0367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0367-3

Keywords

Navigation