Skip to main content
Log in

On the regularity of solutions of optimal transportation problems

  • Published:
Acta Mathematica

Abstract

We give a necessary and sufficient condition on the cost function so that the map solution of Monge’s optimal transportation problem is continuous for arbitrary smooth positive data. This condition was first introduced by Ma, Trudinger and Wang [24], [30] for a priori estimates of the corresponding Monge–Ampère equation. It is expressed by a socalled cost-sectional curvature being non-negative. We show that when the cost function is the squared distance of a Riemannian manifold, the cost-sectional curvature yields the sectional curvature. As a consequence, if the manifold does not have non-negative sectional curvature everywhere, the optimal transport map cannot be continuous for arbitrary smooth positive data. The non-negativity of the cost-sectional curvature is shown to be equivalent to the connectedness of the contact set between any cost-convex function (the proper generalization of a convex function) and any of its supporting functions. When the cost-sectional curvature is uniformly positive, we obtain that optimal maps are continuous or Hölder continuous under quite weak assumptions on the data, compared to what is needed in the Euclidean case. This case includes the quadratic cost on the round sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenier, Y., Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 44 (1991), 375–417.

    Article  MATH  MathSciNet  Google Scholar 

  2. Cabré, X., Nondivergent elliptic equations on manifolds with nonnegative curvature. Comm. Pure Appl. Math., 50 (1997), 623–665.

    Article  MATH  MathSciNet  Google Scholar 

  3. Caffarelli, L. A., Interior W 2,p estimates for solutions of the Monge–Ampère equation. Ann. of Math., 131 (1990), 135–150.

    Article  MathSciNet  Google Scholar 

  4. — A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. of Math., 131 (1990), 129–134.

    Article  MathSciNet  Google Scholar 

  5. — Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl. Math., 44 (1991), 965–969.

    Article  MATH  MathSciNet  Google Scholar 

  6. — Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math., 45 (1992), 1141–1151.

    Article  MATH  MathSciNet  Google Scholar 

  7. — The regularity of mappings with a convex potential. J. Amer. Math. Soc., 5 (1992), 99–104.

    Article  MATH  MathSciNet  Google Scholar 

  8. — Allocation maps with general cost functions, in Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math., 177, pp. 29–35. Dekker, New York, 1996.

    Google Scholar 

  9. — Boundary regularity of maps with convex potentials. II. Ann. of Math., 144 (1996), 453–496.

    Article  MATH  MathSciNet  Google Scholar 

  10. Caffarelli, L. A. & Cabré, X., Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, 43. Amer. Math. Soc., Providence, RI, 1995.

    MATH  Google Scholar 

  11. Caffarelli, L.A., Gutiérrez, C.E. & Huang, Q., On the regularity of reflector antennas. Ann. of Math., 167 (2008), 299–323.

    Article  MATH  MathSciNet  Google Scholar 

  12. Cordero-Erausquin, D., McCann, R. J. & Schmuckenschläger, M., A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math., 146 (2001), 219–257.

    Article  MATH  Google Scholar 

  13. Delanoë, P., Classical solvability in dimension two of the second boundary-value problem associated with the Monge–Ampère operator. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 443–457.

    MATH  Google Scholar 

  14. — Gradient rearrangement for diffeomorphisms of a compact manifold. Differential Geom. Appl., 20 (2004), 145–165.

    Article  MATH  MathSciNet  Google Scholar 

  15. Delanoë, P. & Loeper, G., Gradient estimates for potentials of invertible gradientmappings on the sphere. Calc. Var. Partial Differential Equations, 26 (2006), 297–311.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gangbo, W. & McCann, R. J., The geometry of optimal transportation. Acta Math., 177 (1996), 113–161.

    Article  MATH  MathSciNet  Google Scholar 

  17. — Shape recognition via Wasserstein distance. Quart. Appl. Math., 58 (2000), 705–737.

    MATH  MathSciNet  Google Scholar 

  18. Gilbarg, D. & Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, 224. Springer, Berlin–Heidelberg, 1983.

    MATH  Google Scholar 

  19. Guan, P. & Wang, X.-J., On a Monge–Ampère equation arising in geometric optics. J. Differential Geom., 48 (1998), 205–223.

    MATH  MathSciNet  Google Scholar 

  20. Kim, Y.-H. & McCann, R. J., Continuity, curvature, and the general covariance of optimal transportation. To appear in J. Eur. Math. Soc.

  21. Knott, M. & Smith, C. S., On the optimal mapping of distributions. J. Optim. Theory Appl., 43 (1984), 39–49.

    Article  MATH  MathSciNet  Google Scholar 

  22. Loeper, G., On the regularity of solutions of optimal transportation problems: the sphere and the reflector antenna. To appear in Arch. Ration. Mech. Anal.

  23. Lott, J. & Villani, C., Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math., 169 (2009), 903–991.

    Article  MathSciNet  Google Scholar 

  24. Ma, X.-N., Trudinger, N. S. & Wang, X.-J., Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal., 177 (2005), 151–183.

    Article  MATH  MathSciNet  Google Scholar 

  25. McCann, R. J., Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal., 11 (2001), 589–608.

    Article  MATH  MathSciNet  Google Scholar 

  26. Otto, F. & Villani, C., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173 (2000), 361–400.

    Article  MATH  MathSciNet  Google Scholar 

  27. Sturm, K.-T., On the geometry of metric measure spaces. I, II. Acta Math., 196 (2006), 65–131, 133–177.

    Article  MATH  MathSciNet  Google Scholar 

  28. Trudinger, N. S., Recent developments in elliptic partial differential equations of Monge–Ampère type, in International Congress of Mathematicians. Vol. III, pp. 291–301. Eur. Math. Soc., Zürich, 2006.

    Google Scholar 

  29. Trudinger, N. S. & Wang, X.-J., On strict convexity and continuous differentiability of potential functions in optimal transportation. Arch. Ration. Mech. Anal., 192 (2009), 403–418.

    Article  Google Scholar 

  30. — On the second boundary value problem for Monge–Ampère type equations and optimal transportation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (2009), 143–174.

    Google Scholar 

  31. Urbas, J., On the second boundary value problem for equations of Monge–Ampère type. J. Reine Angew. Math., 487 (1997), 115–124.

    MATH  MathSciNet  Google Scholar 

  32. — Mass transfer problems. Lecture Notes, University of Bonn, 1998.

    Google Scholar 

  33. Villani, C., Topics in Optimal Transportation. Graduate Studies in Mathematics, 58. Amer. Math. Soc., Providence, RI, 2003.

    MATH  Google Scholar 

  34. Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften, 338. Springer, Berlin–Heidelberg, 2009.

    MATH  Google Scholar 

  35. Wang, X.-J., Some counterexamples to the regularity of Monge–Ampère equations. Proc. Amer. Math. Soc., 123 (1995), 841–845.

    Article  MATH  MathSciNet  Google Scholar 

  36. — On the design of a reflector antenna. Inverse Problems, 12 (1996), 351–375.

    Article  MATH  MathSciNet  Google Scholar 

  37. — On the design of a reflector antenna. II. Calc. Var. Partial Differential Equations, 20 (2004), 329–341.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Loeper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeper, G. On the regularity of solutions of optimal transportation problems. Acta Math 202, 241–283 (2009). https://doi.org/10.1007/s11511-009-0037-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-009-0037-8

Keywords

Navigation