Skip to main content

Halophiles Exposed Concomitantly to Multiple Stressors: Adaptive Mechanisms of Halophilic Alkalithermophiles

  • Chapter
  • First Online:
Halophiles and Hypersaline Environments

Abstract

The anaerobic halophilic alkalithermophiles are a novel group of “poly-extremophiles.” The recent isolation of novel anaerobic halophilic alkalithermophiles belonging to the genera Natranaerobius and Natronovirga (forming the order Natranaerobiales) has provided a platform for detailed biochemical and bioenergetic experiments, allowing a greater understanding of the novel adaptive mechanisms employed by the poly-extremophiles. This review highlights the adaptive mechanisms employed by the model anaerobic halophilic alkalithermophile, Natranaerobius thermophilus. N. thermophilus grows optimally at 3.3 M Na+, pH55°C 9.5 and 53°C. Biochemical and physiological analyses revealed that N. thermophilus combines two mechanisms for adaptation to high salinity. N. thermophilus also shows an unusual pattern of cytoplasm acidification, and utilizes a dual mechanism for cytoplasm acidification based on an unusually large number of cation/proton antiporters and cytoplasmic buffering, a feature not previously observed in other alkalithermophiles studied. Both Natranaerobius thermophilus and Natronovirga wadinatrunensis showed significant resistance to ultra-violet radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers SV, Konings WN, Driessen AJM (2006) Membranes of thermophiles and other extremophiles. In: Rainey FA, Oren A (eds) Methods in microbiology: extremophiles, vol 35. Elsevier, London, pp 161–171

    Google Scholar 

  • Antunes A, Eder W, Fareleira P, Santos H, Huber R (2003) Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 7:29–34

    PubMed  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    Article  PubMed  CAS  Google Scholar 

  • Billini M, Stamatakis K, Sophianopoulou V (2008) Two members of a network of putative Na+/H+ antiporters are involved in salt and pH tolerance of the freshwater cyanobacterium Synechococcus elongatus. J Bacteriol 190:6318–6329

    Article  PubMed  CAS  Google Scholar 

  • Boubriak I, Ng WL, DasSarma P, DasSarma S, Crowley DJ, McCready SJ (2008) Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1. Saline Systems 4:13

    Article  PubMed  Google Scholar 

  • Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Systems 5:9

    Article  PubMed  Google Scholar 

  • Bowers KJ, Sarmiento F, Mesbah NM, Wiegel J Natronolimnobius aegyptiacus sp. nov., an aerobic, extremely halophilic alkalithermophilic archaeon isolated from the athalassohaline Wadi An Natrun, Egypt. Extremophiles (in press)

    Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabel J, Garcia P, Cai J, Hipper H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  PubMed  CAS  Google Scholar 

  • Cook G, Russell J, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579

    PubMed  CAS  Google Scholar 

  • Crowley DJ, Boubriak I, Berquist BR, Clark M, Richard E, Sullivan L, DasSarma S, McCready SJ (2006) The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Systems 2:11

    Article  PubMed  Google Scholar 

  • Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188:5045–5054

    Article  PubMed  CAS  Google Scholar 

  • Fiala G, Woese CR, Langworthy TA, Stetter KO (1990) Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea. Arch Microbiol 154:120–126

    Article  CAS  Google Scholar 

  • Gonçalves LG, Huber R, da Costa M, Santos H (2003) A variant of the hyperthermophile Archaeoglobus fulgidus adapted to grow at high salinity. FEMS Microbiol Lett 218:239–244

    Article  PubMed  Google Scholar 

  • Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145

    Article  PubMed  CAS  Google Scholar 

  • Handa N, Morimatsu K, Lovett ST, Kowalczykowski SC (2009) Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev 23:1234–1245

    Article  PubMed  CAS  Google Scholar 

  • Hiom K (2009) DNA repair: common approaches to fixing double-strand breaks. Curr Biol 19:R523–R525

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Zemsky J, Ivey DM, Krulwich TA (1997) Role of the nhaC-encoded Na+/H+ antiporter of alkaliphiic Bacillus firmus OF4. J Bacteriol 179:3851–3857

    PubMed  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Kevbrin VV, Romanek CS, Wiegel J (2004) Alkalithermophiles: a double challenge from extreme environments. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 395–412

    Google Scholar 

  • Konings WN, Albers S-V, Koning S, Driessen AJM (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Leeuwenhoek 81:61–72

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:401–438

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260

    Article  PubMed  CAS  Google Scholar 

  • Kunkel T, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  PubMed  CAS  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, da Costa M, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902

    PubMed  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2006) Isolation, cultivation and characterization of alkalithermophiles. In: Rainey FA, Oren A (eds) Methods in microbiology, vol 35, Extremophiles. Academic Press/Elsevier, London, pp 451–468

    Google Scholar 

  • Mesbah NM, Wiegel J (2008) Life at extreme limits: the anaerobic halophilic alkalithermophiles. In: Wiegel J, Adams MWW, Maier R (eds) The incredible anaerobes: from physiology to genomics to fuels. Annals of the New York Academy of Sciences, New York

    Google Scholar 

  • Mesbah NM, Wiegel J (2009) Natronovirga wadinatrunensis gen. nov. sp. nov. and Natranaerobius trueperi sp. nov., two halophilic alkalithermophilic microorganisms from soda lakes of the Wadi An Natrun, Egypt. Int J Syst Evol Microbiol 59:2042–2048

    Article  PubMed  Google Scholar 

  • Mesbah NM, Abou-El-Ela SH, Wiegel J (2007a) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007b) Natranaerobius thermophilus gen. nov. sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol Microbiol 74:270–281

    Article  PubMed  CAS  Google Scholar 

  • Müller V, Oren A (2003) Metabolism of chloride in halophilic prokaryotes. Extremophiles 7:261–266

    Article  PubMed  Google Scholar 

  • Müller V, Saum SH (2005) The chloride regulon of Halobacillus halophilus: a novel regulatory network for salt perception and signal transduction in bacteria. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 303–310

    Google Scholar 

  • Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4:2

    PubMed  Google Scholar 

  • Oren A, Heldal M, Norland S, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic Salinibacter ruber. Extremophiles 6:491–498

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157

    Article  PubMed  CAS  Google Scholar 

  • Padan E, Bibi E, Masahiro I, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  PubMed  CAS  Google Scholar 

  • Prowe S, van de Vossenberg J, Driessen A, Antranikian G, Konings W (1996) Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J Bacteriol 178:4099–4104

    PubMed  CAS  Google Scholar 

  • Radchenko MV, Waditee R, Oshimi S, Fukuhara M, Takabe T, Nakamura T (2006) Cloning, functional expression and primary characterization of Vibrio parahaemolyticus K+/H+ antiporter genes in Escherichia coli. Mol Microbiol 59:651–663

    Article  PubMed  CAS  Google Scholar 

  • Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71

    Article  PubMed  CAS  Google Scholar 

  • Roberts M (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:5

    Article  PubMed  Google Scholar 

  • Roeßler M, Müller V (1998) Quantitative and physiological analysis of chloride dependence of growth in Halobacillus halophilus. Appl Environ Microbiol 64:3813–3817

    PubMed  Google Scholar 

  • Roeßler M, Müller V (2001) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J Bacteriol 184:6207–6215

    Article  Google Scholar 

  • Roeßler M, Müller V (2002) Chloride dependence of glycine betaine transport in Halobacillus halophilus. FEBS Lett 489:125–128

    Article  Google Scholar 

  • Santos H, da Costa M (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A (1991) Isolation and characterization of thermophilic, alkaliphilic, cellulose-degrading Bacillus thermoalcaliphilus sp. nov. from termite (Odontotermes obesus) mound soil of a semiarid area. Geomicrobiol J 9:225–232

    Article  CAS  Google Scholar 

  • Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Systems 4:4

    Article  PubMed  Google Scholar 

  • Silva Z, Borges N, Martins LO, Wait R, da Costa M, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172

    Article  PubMed  CAS  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55(1–79):317

    Google Scholar 

  • Speelmans G, Poolman B, Abee T, Konings W (1993) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci USA 90:7975–7979

    Article  PubMed  CAS  Google Scholar 

  • Stolyar S, He Q, Joachimiak MP, He Z, Yang ZK, Borglin SE, Joyner DC, Huang K, Alm E, Hazen TC, Zhou J, Wall JD, Arkin AP, Stahl DA (2007) Response of Desulfovibrio vulgaris to alkaline stress. J Bacteriol 189:8944–8952

    Article  PubMed  CAS  Google Scholar 

  • Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116

    PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    PubMed  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  PubMed  CAS  Google Scholar 

  • Terui Y, Otnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433

    Article  PubMed  CAS  Google Scholar 

  • Uzawa T, Hamasaki N, Oshima T (1993) Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extract. J Biochem 114:478–486

    PubMed  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Wei Y, Guffanti AA, Ito M, Krulwich TA (2000) Bacillus subtilis YqkI is a novel malic/Na+-lactate antiporter that enhances growth on malate at low protonmotive force. J Biol Chem 275:30287–30292

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Liu J, Ma Y, Krulwich TA (2007) Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement and alkali-sensitive Escherichia coli mutant. Microbiology 153:2168–2179

    Article  PubMed  CAS  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Wang L, Chen H, Lu H, Ying N, Tian B, Hua Y (2008) RecO is essential for DNA damage repair in Deinococcus radiodurans. J Bacteriol 190:2624–2628

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA (2004) Halonatronum saccharophilum gen. nov. sp. nov.: a new haloalkaliphilic bacterium of the order Haloanaeobiales from Lake Magadi. Microbiology 70:64–72

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Several people contributed to the work described in this article. We would like to thank Dr. Jenny Blamey for assistance with UV resistance experiments, Dr. Tairo Oshima for performing polyamines analysis and Dr. Baisuo Zhao for providing data on compatible solute accumulation in N. thermophilus. Karen Bowers performed experiments on the desiccation and gamma radiation resistance of N. thermophilus. The presented research herein was supported by grants MCB-060224 from the National Science Foundation and AFOSR 033835–01 from the Air Force Office of Scientific Research to J Wiegel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha M. Mesbah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mesbah, N.M., Wiegel, J. (2011). Halophiles Exposed Concomitantly to Multiple Stressors: Adaptive Mechanisms of Halophilic Alkalithermophiles. In: Ventosa, A., Oren, A., Ma, Y. (eds) Halophiles and Hypersaline Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20198-1_14

Download citation

Publish with us

Policies and ethics