Skip to main content

Precise Breeding Through All-Native DNA Transformation

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

Intragenic modification is a new approach to genetic engineering that improves the agronomic performance and nutritional characteristics of crops without incorporating foreign DNA into their genomes. It transforms plants with all-native and marker-free transfer DNAs carrying gene expression or silencing cassettes. Examples of early applications include enhanced black spot bruise tolerance, reduced cold-induced starch degradation, lowered processing-induced acrylamide formation, extended shelf life, reduced lignin content, and increased antioxidant power. The availability of an increasingly comprehensive toolbox facilitates the activation of dormant traits, while also enabling the efficient elimination of lingering toxins, allergens, and anti-nutritional compounds. By excluding selectable marker genes and other foreign genetic elements, the intragenic approach may not only limit biosafety risks but also expedite the governmental deregulation process while alleviating public concerns regarding engineered crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bajaj S, Ran Y, Phillips J, Kularajathevan G, Pal S, Cohen D, Elborough K, Puthigae S (2006). A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L). Plant Cell Rep 25:651–659

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  PubMed  CAS  Google Scholar 

  • Bent AF (2006) Arabidopsis thaliana floral dip transformation method. In: Wang K (ed) Agrobacterium protocols, 2nd edn. Methods in molecular biology, vol 343. Humana, Totowa, pp 87–103

    Google Scholar 

  • Bradford KJ, Van Deynze A, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444

    Article  PubMed  CAS  Google Scholar 

  • Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, Nap JP, Jacobs JME (2007) Intragenic vectors for gene transfer without foreign DNA. Euphytica 154:341–353

    Article  CAS  Google Scholar 

  • Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

    Article  PubMed  CAS  Google Scholar 

  • De Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Deikman J, Kline R, Fischer RL (1992) Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol 100:2013–2017

    Article  PubMed  CAS  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  PubMed  CAS  Google Scholar 

  • Du Jardin P, Harvengt L, Kirsch F, Le V, Nguyen-Quoc B, Serge Yelle S (1997) Sink-cell-specific activity of a potato ADP-glucose pyrophosphorylase B-subunit promoter in transgenic potato and tomato plants. Planta 203:133–139

    Article  CAS  Google Scholar 

  • Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30:115–122

    Article  PubMed  CAS  Google Scholar 

  • Garbarino JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127

    Article  PubMed  CAS  Google Scholar 

  • Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Guyon VN, Astwood JD, Garner EC, Dunker AK, Taylor LP (2000) Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Plant Physiol 123:699–710

    Article  PubMed  CAS  Google Scholar 

  • Hoffman NE, Ko K, Milkowski D, Pichersky E (1991) Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Mol Biol 17:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R, Goldsbrough A, Bevan M (1990) Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol 14:995–1006

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler HF (2000) Food safety assessment of genetically modified crops. Agron J 92:793–797

    Article  Google Scholar 

  • Keddie JS, Tsiantis M, Piffanelli P, Cella R, Hatzopoulos P, Murphy DJ (1994) A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Mol Biol 24:327–340

    Article  PubMed  CAS  Google Scholar 

  • Kelemen Z, Mai A, Kapros T, Fehér A, Györgyey J, Waterborg JH, Dudits D (2002) Transformation vector based on promoter and intron sequences of a replacement histone H3 gene. A tool for high, constitutive gene expression in plants. Transgenic Res 11:69–72

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Lee YH, Kim HS, Kim MS, Hahn KW, Ko JH, Joung H, Jeon JH (2008) Development of patatin knockdown potato tubers using RNA interference (RNAi) technology, for the production of human-therapeutic glycoproteins. BMC Biotechnol 8:36

    Article  PubMed  Google Scholar 

  • Kliebenstein DJ, West MA, van Leeuwen H, Kim K, Doerge RW, Michelmore RW (2006) Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 172:1179–1189

    Article  PubMed  Google Scholar 

  • Kohno-Murase J, Murase M, Ichikawa H, Imamura J (1994) Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Plant Mol Biol 26:1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Kondrak M, van der Meer IM, Banfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 15:729–737

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I, Grimm B (2000) Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol 122:75–84

    Article  PubMed  CAS  Google Scholar 

  • Li X, Volrath SL, Nicholl DB, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cao MQ, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L ssp Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–192

    Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  PubMed  CAS  Google Scholar 

  • Molinier J, Thomas C, Brignou M, Hahne G (2002) Transient expression of ipt gene enhances regeneration and transformation rates of sunflower shoot apices (Helianthus annuus L.). Plant Cell Rep 21:251–256

    Article  CAS  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KM (2003) Transgenic organisms--time for conceptual diversification? Nat Biotechnol 21:227–228

    Article  PubMed  CAS  Google Scholar 

  • Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578

    Article  PubMed  CAS  Google Scholar 

  • Richael CM, Kalyaeva M, Chretien RC, Yan H, Adimulam S, Stivison A, Weeks JT, Rommens CM (2008) Cytokinin vectors mediate marker-free and backbone-free plant transformation. Transgenic Res 17:905–917

    Article  PubMed  CAS  Google Scholar 

  • Richardson K, Maher D, McGibbon L, Sheridan R, Khan A, Ellison N (2007) A Cisgenic approach to genetic transformation of forage. Presentation to the Plant Transformation Technologies Workshop, Vienna

    Google Scholar 

  • Rommens CM (2008) The need for professional guidelines in plant breeding. Trends Plant Sci 13:261–263

    Article  CAS  Google Scholar 

  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant's own genome. Plant Physiol 135:421–431

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J (2005) Plant-derived transfer-DNAs. Plant Physiol 139:1338–1349

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Yan H, Swords K, Richael C, Ye J (2008a) Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Richael CM, Yan H, Navarre DA, Ye J, Krucker M, Swords K (2008b) Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnol J 6:870–886

    Article  PubMed  CAS  Google Scholar 

  • Sathish P, Withana N, Biswas M, Bryant C, Templeton K, Al-Wahb M, Smith-Espinoza C, Roche JR, Elborough KM, Phillips JR (2007) Transcriptome analysis reveals season-specific rbcS gene expression profiles in diploid perennial ryegrass (Lolium perenne L). Plant Biotechnol J 5:146–161

    Article  PubMed  CAS  Google Scholar 

  • Scarth R, Tang J (2006) Modification of Brassica oil using conventional and transgenic approaches. Crop Sci 46:1225–1236

    Article  CAS  Google Scholar 

  • Scott AG, Ellison NE, Richardson KA, Allan AM, Maher DA, Griffiths AG (2006) Isolation of promoters using a white clover GeneThresher sequence database. In: Mercer CF (ed) Breeding for success: diversity in action. Proc Australas Plant Breed Conf 13:775–779

    Google Scholar 

  • Shorrosh BS (2000) Plant acyltransferases. International patent application WO00/66749

    Google Scholar 

  • Shorrosh BS (2003) Plant fatty acid desaturase promoters. United States patent US006537750B1

    Google Scholar 

  • Sjödahl S, Gustavsson HO, Rödin J, Rask L (1995) Deletion analysis of the Brassica napus cruciferin gene cru1 promoter in transformed tobacco: promoter activity during early and late stages of embryogenesis is influenced by cis-acting elements in partially separate regions. Planta 197:264–271

    Article  PubMed  Google Scholar 

  • Sovero M (1993) Rapeseed, a new oilseed crop for the United States. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 302–307

    Google Scholar 

  • Sun J, Niu QW, Tarkowski P, Zheng B, Tarkowska D, Sandberg G, Chua NH, Zuo J (2003) The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol 131:167–176

    Article  PubMed  CAS  Google Scholar 

  • van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    Article  PubMed  Google Scholar 

  • van der Vossen EA, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    Article  PubMed  Google Scholar 

  • Van Haaren MJ, Houck CM (1993) A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol Biol 21:625–640

    Article  PubMed  Google Scholar 

  • Visser RG, Stolte A, Jacobsen E (1991) Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol 17:691–699

    Article  PubMed  CAS  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597

    Article  PubMed  CAS  Google Scholar 

  • Winicov I (2000) Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210:416–422

    Article  PubMed  CAS  Google Scholar 

  • Zitnack A, Johnson GR (1970) Glycoalkaloid content of B5141-6 potatoes. Am Potato J 47:256–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caius M. Rommens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rommens, C.M. (2010). Precise Breeding Through All-Native DNA Transformation. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_4

Download citation

Publish with us

Policies and ethics