Skip to main content

Insect Smart Pulses for Sustainable Agriculture

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 2
  • 954 Accesses

Abstract

The development of high-yielding insect-tolerant cultivars using conventional methods has been slow due to a number of reasons. With the advent of recombinant tools and genetic transformation systems, it has been possible to harness gene pool(s) by crossing the species barrier and utilize them for desired trait. Insect pest resistance has largely been introgressed in many crops, including pulses, by using the cry genes from Bacillus thuringiensis. However, many plant genes like lectins, protein inhibitors, etc. are also available that impart tolerance to insect pests and can be used for developing insect-tolerant plants. In comparison with other crops, relatively less work is available in this context in pulses because of their recalcitrant nature and biosafety issues related to candidate gene(s). In the regime of climate change, plant-pest dynamics has also witnessed change, and the need to develop transgenic tolerant to both pest and diseases is desirable. In context of sustainable pulse production, it is essential to develop and use insect-tolerant transgenics that have been developed by following the biosafety regulations, are high yielding, fit into popular cropping systems, and are expected to be remunerative to the stakeholders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharjee S, Das P, Sen S, Bordoloi S, Kumar PA, Sarmah BK (2004) Agrobacterium-mediated genetic transformation of black gram for resistance against pod borers. Proc. Indian Society of Agricultural Biochemists. 12–14 Nov, pp 188–192

    Google Scholar 

  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mohan R, Moar WJ, Moore A, Higgins TJV (2010) Transgenic chickpeas expressing a sequence-modified cry2Aa gene. Plant Sci 178:333–339

    Article  CAS  Google Scholar 

  • Acharjee S, Handique PJ, Sarmah BK (2012) Effect of thidiazuron (TDZ) on in vitro regeneration of blackgram (Vigna mungo L.) embryonic axes. J Crop Sci Biotech 15(4):311–331. https://doi.org/10.1007/s12892-011-0122-3

    Article  Google Scholar 

  • Adlinge PM, Samal KC, Kumara Swamy RV, Rout GR (2014) Rapid in vitro plant regeneration of black gram (Vigna mungo L. Hepper) var. sarala, an important legume crop. Proc Natl Acad Sci, India, Sect B: Biol Sci 84:823–827

    Article  Google Scholar 

  • Armes NJ, Jadhav DR, De Souza KR (1996) A survey of insecticide resistance in Helicoverpa armigera in the Indian sub-continent. Bull Entomol Res 86:499–514

    Article  CAS  Google Scholar 

  • Adesoye A, Machuka J, Togun A (2008) CRY 1AB transgenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7(18):3200–32108

    CAS  Google Scholar 

  • Bakshi A, Mishra SS, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep. https://doi.org/10.1007/s00299-011-1133-8

  • Batra P, Yadav NR, Sindhu A, Yadav RC, Chowdhury VK, Chowdhury JB (2002) Efficient protocol for in vitro direct plant regeneration in chickpea Cicer arietinum L. Indian J Exp Biol 40(5):600–602

    PubMed  CAS  Google Scholar 

  • Bett B, Gollasch S, Moore A, James W, Armstrong J, Walsh T, Harding R, Higgins TJV (2017) Transgenic cowpeas (Vigna unguiculataL. Walp) expressing Bacillus thuringiensisVip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell Tiss Org Cult 131:335–345

    Article  CAS  Google Scholar 

  • Biddle AJ, Cattlin ND (2001) Pests and diseases of peas and beans – a colour handbook. Manson Publishing Ltd, London

    Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allilum sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinium L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544

    Article  CAS  PubMed  Google Scholar 

  • Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42:2167–2173

    Article  Google Scholar 

  • Czapla TH, Lang BA (1990) Effects of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and Southern corn rootworm (Coleoptera: Chysomelidae). J Econ Entomol 83:2480–2485

    Article  Google Scholar 

  • Das A, Datta S, Sujayanand GK, Kumar M, Singh AK, Arpan SA, Ansari J, Kumar M, Faruqui L, Thakur S, PA K, Singh NP (2016) Expression of chimeric Bt gene, Cry1Aabc in transgenic pigeonpea (cv. Asha) confers resistance to gram pod borer (Helico verpa armigera Hubner.). Plant Cell Tiss Org Cult 127:705–715

    Article  CAS  Google Scholar 

  • Das A, Datta S, Thakur S, Shukla A, Ansari J, Sujayanand GK, Kumar PA, Chaturvedi SK, Singh NP (2017) Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Front Plant Sci 8:1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhaliwal GS, Arora R (1994) Trends in agricultural insect pest management. Commonwealth Publishers, New Delhi

    Google Scholar 

  • Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW, Koziel M (1997) Transgenic plants: an emerging approach to pest control. Nat Biotechnol 15:137–141

    Article  CAS  PubMed  Google Scholar 

  • Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac gene. Theor Appl Genet 127(12):2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Ghosh G, Ganguly S, Purohit A, Chowdhury RK, Das A, Chakroborti D (2017) Transgenic pigeonpea events expressing cry1Ac and cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Rep 36(7):1037–1051

    Article  CAS  PubMed  Google Scholar 

  • Higgins TJ (2007) Bt cowpea with protection against pod borer for transfer to Africa. http://www.Publications.csiro.au/rpr/download?pid=csiro:EP124059&dsid=DS1

  • Higgins TJV, Gollasch S, Molvig L et al (2012) Insect-protected cowpeas using gene technology. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on improving livelihoods in the cowpea value chain through advancement in science. Saly, Senegal 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, pp 131–137

    Google Scholar 

  • Hilder VA, Gatehouse AM, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 300:160–163

    Article  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, Van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Trans Res 4:18–25

    Article  CAS  Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:339–345

    Article  CAS  PubMed  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763

    Article  CAS  PubMed  Google Scholar 

  • Jackai LEN (1995) The legume pod borer Maruca testulalis, and its principal host plant, Vigna unguiculata (L.) Walp.- use of selective insecticide sprays as an aid in the identification of useful levels of resistance. Crop Prot, 14:299–306

    Google Scholar 

  • Jiang H, Zhu YX, Chen ZL (1996) Insect resistance of transformed tobacco plants with a gene of a spider insecticidal peptide. Acta Bot Sin 38:95–99

    CAS  Google Scholar 

  • Jones MM, Osmond CB, Turner NC (1980) Accumulation of solutes in leaves of sorghum and sunflower in response to water defcits. Aust J Plant Physiol 7:193–203

    Article  CAS  Google Scholar 

  • Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P, Sen SK (1997) Expression of cry1Ac gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    Article  CAS  Google Scholar 

  • Korth KL (2008) Genes and traits of interest for transgenic plants. In: Stewart CN (ed) Plant biotechnology and genetics: principles, techniques, and applications. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  • Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali S, Russell DA (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Prot 21:449–460

    Article  CAS  Google Scholar 

  • Krishna G, Reddy PS, Ramteke PW, Rambabu P, Sohrab SS, Rana D, Bhattacharya P (2011) In vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [Cajanus cajan (L.) Millsp.] cv. JKR105. Physiol Mol Biol Pl 17(4):375–385

    Article  CAS  Google Scholar 

  • Kuiper HA, Noteborn HJM (1994) Food safety assessment of transgenic insect-resistant Bt tomatoes. Food safety evaluation. In: Proceedings of an OECD-sponsored Workshop, 12–15 September 1994, Oxford, UK. Organisation for Economic Cooperation and Development (OECD), Paris, France, pp 50–57

    Google Scholar 

  • Lawrence PK, Koundal KR (2001) Agrobacterium tumefaciens mediated transformation of pigeonpea (Cajanus cajan L. Millsp.) and molecular analysis of regenerated plants. Curr Sci 80:1428–1432

    CAS  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102

    Article  CAS  Google Scholar 

  • Mohammed BS, Ishikayu MF, Abdullahi US, Katung MD (2014) Response of transgenic Bt cowpea lines and their hybrids under field conditions. J Plant Breed Crop Sci 6(8):91–96

    Article  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. PNAS 97(8):3820–3825

    Article  CAS  PubMed  Google Scholar 

  • Negawo AT, Aftabi M, Jacobsen HJ, Altosaar I, Hassan FS (2013) Insect resistant transgenic pea expressing cry1Ac gene product from Bacillus thuringiensis. Biol Control 67:293–300

    Article  CAS  Google Scholar 

  • Negawo AT, Baraneka L, Jacobsena HJ, Hassan F (2016) Molecular and functional characterization of cry1Ac transgenic pea lines. GM Crops & Food 7:159–174

    Article  Google Scholar 

  • Obembe OO (2008) Exciting times for cowpea genetic transformation research. Life Sci J 5(2):50–52

    Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (VignaunguiculataL.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    Article  CAS  PubMed  Google Scholar 

  • Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53(23):9023–9030

    Google Scholar 

  • Ramu SV, Rohini S, Keshavareddy G, Neelima MG, Shanmugham NB, Kumar ARV, Sarangi SK, Kumar PA, Udayakumar M (2011) Expression of a synthetic cry1AcF gene in transgenic Pigeon pea confers resistance to Helicoverpa armigera. J Appl Entomol, 136:675–687.

    Article  CAS  Google Scholar 

  • Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altaman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding CryIA insecticidal proteins in cotton. Crop Sci 38:1–11

    Article  CAS  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995) Bean a-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107(1233-1):239

    Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect resistant transgenic plants. TIBTECH 16:168–175

    Article  CAS  Google Scholar 

  • Singh SR, Van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278

    Article  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. BioTechnology 12:793–796

    CAS  Google Scholar 

  • Sharma KK, Ananda Kumar P, Singh NP, Sharma HC (2005) Insecticidal genes and their potential in developing transgenic crops for resistance to Heliothis/Helicoverpa. In: Sharma HC (ed) Heliothis/ Helicoverpa management: emerging trends and strategies for future research. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 255–274

    Chapter  Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P, Jayanand B (2006a) Chickpea (Cicer arietinum L.). In: Wang K (ed) Agrobacterium protocols: methods in molecular biology, vol 44. Humana Press Inc., Totowa, pp 313–323

    Chapter  Google Scholar 

  • Sharma KK, Lavanya K, Anjalah A (2006b) Agrobacterium tumefaciens- mediated production of transgenic pigeon pea (Cajanus cajan [L.]Millsp.) expressing the synthetic BT CRY1AB gene. In Vitro Cell Dev Biol 42:165–173

    Article  CAS  Google Scholar 

  • Sharma KK, Sreelatha G, Dayal S (2006c) Pigeonpea [Cajanus cajan L. (Millsp.)]. In: Wang K (ed) Agrobacterium protocols: methods in molecular biology, vol 44. Humana Press Inc., Totowa, pp 359–367

    Chapter  Google Scholar 

  • Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnol 22:1–6

    Article  CAS  Google Scholar 

  • Smith AM (1990) Pea weevil (Bruchus pisorum L.) and crop loss implications for management. In: Fujii K, Gatehouse AMR, Johnson CD, Mitchell R, Yoshida T (eds) Bruchids and legumes: economics, ecology and coevolution. Kluwer Academic Publishers, Dordrecht, pp 105–114

    Chapter  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27(12):1841–1850.

    Article  CAS  PubMed  Google Scholar 

  • Sonia SR, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris alpha-amylase inhibitor-1 gene into mung bean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

    Article  CAS  PubMed  Google Scholar 

  • Sousa-Majer MJ, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJV (2004) Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed specific a-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55(396):497–505

    Article  PubMed  Google Scholar 

  • Sousa-Majer MJ, Hardie DC, Turner NC, Higgins TJV (2007) Bean α-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100(4):1416–1422

    Article  PubMed  Google Scholar 

  • Srinivasan MT, Sharma RP (1991) Agrobacterium-mediated genetic transformation of chickpea (Cicer arietinum). Indian J Exp Biol, 29:758–761

    Google Scholar 

  • Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupts A, Kirti PB (2005) Agrobacterium mediated genetic transformation of pigeonpea (Cajanus cajan L.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080

    Article  CAS  Google Scholar 

  • Tabashnik BE, Carrière Y (2010) Field-evolved resistance to Bt cotton: bollworm in the U.S. and pink bollworm in India. Southwestern Entomologist 35(3):417–424

    Article  Google Scholar 

  • Tabe LM, Wardley-Richardson T, Ceriotti A, Aryan A, McNabb W, Moore A, Higgins TJV (1995) A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci 73:2752–2759

    Article  CAS  PubMed  Google Scholar 

  • Tamo M, Ekesi S, Maniania NK, Cherry A (2003) Biological control, a non-obvious component of IPM for cowpea. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. CABI Publishing, Wallingford, pp 295–309

    Google Scholar 

  • Third Advance Estimates of Production of Commercial Crops for 2016–17, Agricultural Statistics Division Directorate of Economics & Statistics

    Google Scholar 

  • Traore SB, Carlson RE, Pilcher CD, Rice ME (2000) Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron J 92:1027–1035. www.gktoday.in/blog/pulses-production-consumption-and-international-trade-in-india/#Consumption_and_Import_dependency

    Article  Google Scholar 

  • Verma AK and Chand L (2005) Agrobacterium-mediated transformation of pigeonpea (Cajanus cajan L.) with uidA and CryIA(b) genes. Physiol Mol Biol Plant. 11:99–109

    Google Scholar 

  • Xiong L, Ishitani M, Zhu JK (1999) Interaction of osmotic stress, temperature and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119:205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Sreenu P, Maheshwari M, Vanaja M, Venkateswarlu B (2010) Efficient shoot regeneration from double cotyledonary node explants of green gram (Vigna radiata (L.) Wilczek.). Indian J Biotechnol 9:403–407

    CAS  Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Enzviron Microbiol 63:532–536

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathore, M., Das, A., Kushwah, N.S., Singh, N.P. (2018). Insect Smart Pulses for Sustainable Agriculture. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_10

Download citation

Publish with us

Policies and ethics