Skip to main content

In Vitro-Assisted Compression of Breeding Cycles

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

The compression of breeding cycles to quickly progress segregating material to homozygosity has attracted substantial international research interest for some decades. Modified pedigree breeding methods such as single seed descent (SSD) have enabled faster generation turnover and commercialization of new crop cultivars. Since the latter part of the last century, doubled haploid technology has revolutionized the progression to genome fixation in responsive species. In unresponsive but economically important families, biotechnological tools are being developed to accelerate traditional SSD – either by completing the full plant life cycle in vitro or by coupling controlled environmental conditions in the soil to elicit rapid floral onset with germination of immature seed in vitro to truncate seed filling. Both techniques have resulted in step-change efficiencies in generation turnover with up to fourfold improvements in species such as grain legumes. Such enhanced SSD systems are also valuable for breeding complex traits across a range of species. In this chapter, we explore the recent advances in in vitro-assisted breeding cycle compression in crops, opportunities to combine rapid phenotyping for key traits and the benefits of in vitro life cycle completion when researching under restrictive regulatory frameworks and working with enfeebled or rare material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamski T, Krystkowiak K, Kuczynska A, Mikolajczak K, Ogrodowicz P, Ponitka A, Surma M, Slusarkiewicz-Jarzina A (2014) Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.) Electron J Biotechnol 17:6–13

    Article  CAS  Google Scholar 

  • Al-Wareh H, Trolinder NL, Goodin JR (1989) In vitro flowering of potato. Hortscience 24:827–829

    Google Scholar 

  • Ameha M, Skirvin RM, Mitiku G, Dullock D, Hofman P (1998) In vitro tendril and flower development in cucumber (Cucumis sativus) may be regulated by gibberellins. J Hortic Sci Biotechnol 73:159–163

    Article  CAS  Google Scholar 

  • Asawaphan P, Mangkita W, Kachonpadungkitti Y, Matsuyama S, Satake T, Hisajima S (2005) Efficient flower induction from peanut (Arachis hypogaea L.) seedling in vitro. SABRAO J Breed Genet 37:131–140

    Google Scholar 

  • Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Jacas L, Griga M, Ochatt SJ (2013a) Gene transfer in legumes. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany 74:37–100

    Chapter  Google Scholar 

  • Atif RM, Boulisset F, Conreux C, Thompson R, Ochatt SJ (2013b) In vitro auxin treatment promotes cell division and delays endoreduplication in developing seeds of the model legume species Medicago truncatula. Physiol Plant 148:549–559

    Article  PubMed  CAS  Google Scholar 

  • Baghel S, Bansal YK (2014) Synergistic effect of BAP and GA3 on in vitro flowering of Guizotia abyssinica Cass.-a multipurpose oil crop. Physiol Mol Biol Plants 20:241–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bais HP, Sudha GS, Ravishankar GA (2000) Putrescine and AgNO3 influences shoot multiplication, in vitro flowering and endogenous titers of polyamines in Cichorium intybus L. cv. Lucknow local. J Plant Growth Regul 19:238–248

    PubMed  CAS  Google Scholar 

  • Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519

    Article  PubMed  Google Scholar 

  • Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Org 127:585–590

    Article  CAS  Google Scholar 

  • Bhattarai SP, Robert C, Midmore DJ, Palchamy K (2009) In vitro culture of immature seed for rapid generation advancement in tomato. Euphytica 167(1):23–30

    Article  Google Scholar 

  • Bodhipadma K, Leung DWM (2003) In vitro fruiting and seed set of Capsicum annuum l. cv. Sweet Banana. Vitro Cell Dev-Pl 39:536–539

    Article  Google Scholar 

  • Burton AL, Pennisi SV, van Iersel MW (2007) Morphology and postharvest performance of Geogenanthus undatus C. Koch & Linden ‘Inca’after application of ancymidol or flurprimidol. Hortscience 42:544–549

    CAS  Google Scholar 

  • Caligari PDS, Powell W, Jinks JL (1987) A comparison of inbred lines derived by doubled haploidy and single seed descent in spring barley (Hordeum vulgare). Ann Appl Biol 111:667–675

    Article  Google Scholar 

  • Cao Z, Zhu X, Chen H, Zhang Z (2015) Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol Breed 35:215–228

    Article  CAS  Google Scholar 

  • Castello M, Croser J, Lülsdorf M, Ramankutty P, Pradhan A, Nelson M, Real D (2015) Breaking primary dormancy in seeds of the perennial pasture legume tedera (Bituminaria bituminosa C.H. Stirt. vars albomarginata and crassiuscula). Grass Forage Sci 70:365–373

    Article  CAS  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  CAS  Google Scholar 

  • Cope KR, Bugbee B (2013) Spectral effects of three types of whitelight-emitting diodes on plant growth and development: absoluteversus relative amounts of blue light. Hortscience 48:504–509

    CAS  Google Scholar 

  • Cregan PB, Hartwig EE (1984) Characterization of flowering response to photoperiod in diverse soybean genotypes. Crop Sci 24:659–662

    Article  Google Scholar 

  • Croser J, Pazos-Navarro M, Bennett RG, Tschirren S, Edwards K, Erskine W, Creasy R, Ribalta F (2016) Time to flower of temperate pulses in vivo and generation turnover in vivoin vitro of narrow-leaf lupin accelerated by low red 448 to far-red ratio and high intensity in the far-red region. Plant Cell Tissue Org 127:591–599

    Article  CAS  Google Scholar 

  • Cummings IG, Reid JB, Koutoulis A (2007) Red to far-red ratio correctionin plant growth chambers—growth responses and influenceof thermal load on garden pea. Physiol Plant 131:171–179

    PubMed  CAS  Google Scholar 

  • Davison J, Ammann K (2017) New GMO regulations for old: determining a new future for EU crop biotechnology. GM Crops Food 8(1):13–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickens CWS, van Staden J (1988) The in vitro flowering of Kalanchöe blossfeldiana Poellniz.: 1. Role of culture conditions and nutrients. J Exp Bot 39:461–471

    Article  CAS  Google Scholar 

  • Dutta Mudoi K, Borthakur M (2012) Factors affecting the frequency of in vitro flowering of Bambusa balcooa Roxb. Indian J Plant Physiol 17:37–43

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1987) The development of desiccation-tolerance and maximum seed quality during seed maturationin six grain legumes. Ann Bot 59:23–29

    Article  Google Scholar 

  • Franklin G, Pius PK, Ignacimuthu S (2000) Factors affecting in vitro flowering and fruiting of green pea (Pisum sativum L.) Euphytica 115:65–74

    Article  CAS  Google Scholar 

  • Friend DJC, Fisher JE, Helson VA (1963) The effect of light intensity and temperature on floral initiation and inflorescence development of Marquis wheat. Can J Bot 41:1663–1674

    Article  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallardo K, Kurt C, Thompson R, Ochatt S (2006) In vitro culture of immature M. truncatula grains under conditions permitting embryo development comparable to that observed in vivo. Plant Sci 170:1052–1058

    Article  CAS  Google Scholar 

  • Gallardo K, Thompson R, Burstin J (2008) Reserve accumulation in legume seeds. C R Biol 331:755–762

    Article  PubMed  CAS  Google Scholar 

  • Gatti I, Guindón F, Bermejo C, Espósito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Org 127:543–559

    Article  CAS  Google Scholar 

  • Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Org 104:283–300

    Article  Google Scholar 

  • Gielis J, Peeters H, Gillis J, Debergh PC (2002) Tissue culture strategies for genetic improvement of bamboo. In: Van Huylebroeck J, Van Bockstaele E, Debergh P (eds) Proceedings of the XX international eucarpia symposium, Acta Hort 552:195–203

    Google Scholar 

  • Goulden CH (1939) Problems in plant selection. In: Burnett RC (ed) Proceedings of the seventh genetic congress. Cambridge UniversityPress, England, pp 132–133

    Google Scholar 

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Hamid MM, Williams RR (1997) Effect of different types and concentrations of plant growth retardants on Sturt's desert pea (Swainsona formosa). Sci Hortic 71:79–85

    Article  CAS  Google Scholar 

  • Haque SKM, Ghosh B (2013a) Micropropagation, in vitro flowering and cytological studies of Bacopa chamaedryoides an ethno-medicinal plant. Environ Exp Biol 11:59–68

    Google Scholar 

  • Haque SM, Ghosh B (2013b) In vitro completion of sexual life cycle: production of R1 plant of Ipomoea quamoclit L. Propag Ornam Plants 13:19–24

    Google Scholar 

  • Haque SM, Paul S, Ghosh B (2016) High-frequency in vitro flowering, hand-pollination and fruit setting in ten different cultivars of Capsicum spp. (C. annuum, C. chinense, and C. frutescens): an initial step towards in vitro hybrid production. Plant Cell Tissue Org 127:161–173

    Article  CAS  Google Scholar 

  • Iannucci A, Terribile MR, Martiniello P (2008) Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterraneanenvironment. Field Crop Res 1006:156–162

    Article  Google Scholar 

  • Islam MS, Zeng L, Delhom CD, Song X, Kim HJ, Li P, Fang DD (2014) Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength. Mol Breed 34:373–384

    Article  CAS  Google Scholar 

  • Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD (2016) A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 17:903. https://doi.org/10.1186/s12864-016-3249-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain SM, Sopory SK, Veilleux RE (1996/1997) In vitro haploid production in higher plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Joshi MS, Nadgauda RS (1997) Cytokinin and in vitro induction of flowering in bamboo: Bambusa arundinacea (Retz.) wild. Curr Sci 73:523–526

    CAS  Google Scholar 

  • Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 1–4

    Google Scholar 

  • Kasten W, Paradise T, Kunert R, Straka P (1991) Progress in realization of interspecific hybrids in the genus Lupinus by means of an embryo rescue technique. Biol Zbl 110:301–309

    Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Le Deunff Y, Rachidian Z (1988) Interruption of water delivery atphysiological maturity is essential for seed development, germinationand seedling growth in pea (Pisum sativum L.) J Exp Bot 39:1221–1230

    Article  Google Scholar 

  • Lentini Z, Mussell H, Mutschler MA, Earle ED (1988) Ethylene generation and reversal of ethylene effects during development in vitro of rapid-cycling Brassica campestris. L. Plant Sci 54:75–81

    Article  CAS  Google Scholar 

  • Liu H, Zwer P, Wang H, Liu C, Lu Z, Wang Y, Yan G (2016) A fast generation cycling system for oat and triticale breeding. Plant Breed 135:574–579

    Article  Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploid production in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire, pp 336–347

    Google Scholar 

  • Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic Publishers, Dordrecht, pp 309–335

    Chapter  Google Scholar 

  • Metwally EI, El-Denary ME, Omar AM, Naidoo Y, Dewir YH (2012) Bulb and vegetative characteristics of garlic (Allium sativum L.) from in vitro culture through acclimatization and field production. Af J Ag Res 7:5792–5795

    Article  Google Scholar 

  • Mobini SH, Lülsdorf M, Warkentin TD, Vandenberg A (2015) Plantgrowth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev-Pl 51:71–79

    Article  CAS  Google Scholar 

  • Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.) In Vitro Cell Dev-Pl 52:530–536

    Article  CAS  Google Scholar 

  • Moe R, Heins R (1990) Control of plant morphogenesis and flowering by light quality and temperature. Acta Hortic 272:81–89

    Article  Google Scholar 

  • Murfet IC, Reid JB (1974) Flowering in Pisum: the influence of photoperiodand vernalising temperatures on the expression of genesLf and Sn. Z Pflanzenphysiol 71:323–331

    Article  Google Scholar 

  • Murthy KSR, Kondamudi R, Chalapathi Rao PV, Pullaiah T (2012) In vitro flowering - a review. Int J Agr Tech 8:1517–1536

    Google Scholar 

  • Narasimhulu SB, Reddy GM (1984) In vitro flowering and pod formation from cotyledons of groundnut (Arachis hypogaea L.) Theor Appl Genet 69:87–89

    Article  PubMed  CAS  Google Scholar 

  • Naznin MT, Lefsrud MG (2014) Impact of LED irradiance on plant photosynthesis and action spectrum of plantlet. Proceedings SPIE 9216, optics and photonics for information processing VIII 19 Sept 2014. https://doi.org/10.1117/12.2061236

  • Nelson MN, Berger JD, Erskine W (2010) Flowering time control in annual legumes: prospects in a changing global climate. CABRev Pers Agr Vet Sci Nutr Nat Res 5:49–62

    Google Scholar 

  • Nichols P, Foster K, Piano E, Pecetti L, Kaur P, Ghamkhar K, Collins W (2013) Genetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospects. Crop Pasture Sci 64:312–346

    Article  CAS  Google Scholar 

  • Obendorf RL, Wettlaufer SH (1984) Precocious germination during in vitro growth of soybean seeds. Plant Physiol 76(4):1024–1028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochatt SJ (2011) Immature seeds and embryos of Medicago truncatula cultured in vitro. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols; methods in molecular biology. Springer Protocols/Humana Press, New York, pp 39–52

    Chapter  Google Scholar 

  • Ochatt SJ (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35:535–552

    Article  CAS  Google Scholar 

  • Ochatt SJ (2017) Embryo and seed tissue culture help unravelling seed development and cell totipotence. In: Thomas B, Murray B, Murphy D (eds) Encyclopedia of applied plant sciences, 2nd edn. Academic Press, Oxford. In press

    Google Scholar 

  • Ochatt SJ, Sangwan RS (2008) In vitro shortening of generation time in Arabidopsis thaliana. Plant Cell Tissue Org 93:133–137

    Article  Google Scholar 

  • Ochatt SJ, Sangwan RS (2010) In vitro flowering and seed set: acceleration of generation cycles. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, Chichester, pp 97–110

    Chapter  Google Scholar 

  • Ochatt SJ, Revilla MA (2016) From stress to embryos: some of the problems for induction and maturation of somatic embryos. In: Germanà MA, Lambardi M (eds) In vitro plant embryogenesis. Springer, New York, pp 523–536

    Chapter  Google Scholar 

  • Ochatt SJ, Sangwan RS, Marget P, Assoumou Ndong Y, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440

    Article  Google Scholar 

  • Ochatt S, Marget P, Benabdelmouna A, Aubert G, Moussy F, Pontécaille C, Jacas L (2004) Overcoming hybridisation barriers between pea and some of its wild relatives. Euphytica 137:353–359

    Article  CAS  Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  PubMed  CAS  Google Scholar 

  • Ochatt SJ, Conreux C, Jacas L (2010) In vitroproduction of sweet peas (Lathyrus odoratus L.) via axillary shoots. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants, methods in molecular biology, vol 589. Springer, New York, pp 293–230

    Chapter  Google Scholar 

  • PazosNavarro M, Castello M, Bennett RG, Nichols P, Croser J (2017) In vitro-assisted single seed descent for breeding cycle compression in subterranean clover (Trifolium subterraneum L.) Crop Pasture Sci. https://doi.org/10.1071/CP17067

  • Pobudkiewicz A, Treder J (2006) Effects of flurprimidol and daminozide on growth and flowering of oriental lily ‘Mona Lisa. Sci Hortic 110:328–333

    Article  CAS  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Biol 51:501–531

    Article  CAS  Google Scholar 

  • Ribalta F, Croser J, Ochatt S (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110

    Article  PubMed  CAS  Google Scholar 

  • Ribalta FM, Croser JS, Erskine W, Finnegan PM, Lülsdorf MM, Ochatt SJ (2014) The antigibberellin Flurprimidol permits in vitro flowering and seed-set across a range of pea (Pisum sativum L.) genotypes by reducing internode length. Biol Plant 58:39–46

    Article  CAS  Google Scholar 

  • Ribalta FM, Pazos Navarro M, Nelson K, Edwards K, Ross JJ, Bennett RG, Munday C, Erskine W, Ochatt SJ, Croser JS (2017) Precocious floral initiation and identification of exact timing of embryo physiological maturity facilitiate germination of immature seeds to truncate the lifecycle of pea. Plant Growth Regul 81(2):345–353

    Article  CAS  Google Scholar 

  • Rizal G, Karki S, Alcasid M, Montecillo F, Acebron K, Larazo N, Garcia R, Slamet-Loedin IH, Quick WP (2014) Shortening the breeding cycle of sorghum, a model crop for research. Crop Sci 54(2):520–529

    Article  Google Scholar 

  • Roberts EH, Hadley P, Summerfield RJ (1985) Effects of temperature and photoperiod on flowering in chickpeas (Cicer arietinum L.) Ann Bot 55:881–892

    Article  Google Scholar 

  • Roumet P, Morin F (1997) Germination of immature soybean seeds to shorten reproductive cycle duration. Crop Sci 37:521–525

    Article  Google Scholar 

  • Runkle ES, Heins RD (2001) Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hortic Sci 126:275–282

    Google Scholar 

  • Sarker RH, Das SK, Hoque MI (2012) In vitro flowering and seed formation in lentil (Lens culinaris Medik.) In Vitro Cell Dev-Pl 48:446–452

    Article  Google Scholar 

  • Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma A, Kumar V, Giridhar P, Ravishankar GA (2008) Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation. Electron J Biotechnol 11:2. https://doi.org/10.4067/S0717-34582008000200011

    Article  Google Scholar 

  • Sheeja TE, Mandal AB (2003) In vitro flowering and fruiting in tomato (Lycopersicon esculentum Mill.) Asia Pac J Mol Biol Biotechnol 11(1):37–42

    Google Scholar 

  • Sivanesan I, Park SW (2015) Optimizing factors affecting adventitious shoot regeneration, in vitro flowering and fruiting of Withania somnifera (L.) Dunal. Ind Crop Prod 76:223–328

    Article  CAS  Google Scholar 

  • Slater S, Yuan HY, Lulsdorf MM, Vandenberg A, Zaharia L, Han X, Abrams S (2013) Comprehensive hormone profiling of the developing seeds of four grain legumes. Plant Cell Rep 3:1939–1952

    Article  CAS  Google Scholar 

  • Spalding EP, Folta KM (2005) Illuminating topics in photobiology. Plant Cell Environ 28:39–53

    Article  CAS  Google Scholar 

  • Stutte GW (2009) Light-emitting diodes for manipulating the phytochrome apparatus. Hortscience 44:231–234

    Google Scholar 

  • Surma M, Adamski T, Swiecicki W, Barzyk P, Kaczmarek Z, Kuczynska A, Krystkowiak K, Mikolajczak K, Ogrodowicz P (2013) Preliminary results of in vitro culture of pea and lupin embryosfor the reduction of generation cycles in single seed descent technique. Acta Soc Bot Pol 82:231–236

    Article  Google Scholar 

  • Summerfield RJ, Roberts EH, Erskine W, Ellis RH (1983) Effects of temperature and photoperiod on flowering time in lentils (Lens culinaris Medic). Ann Bot 56:659–671

    Article  Google Scholar 

  • Summerfield RJ, Lawn RJ (1987) Environmental modulation of flowering in mungbean (Vigna radiata): a reappraisal. Exp Agric 23:461–470

    Article  Google Scholar 

  • Taylor NJ, Light ME, Staden JV (2005) In vitro flowering of Kniphofia leucocephala: influence of cytokinins. Plant Cell Tissue Org 83:327–333

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Kerbauy GB, Zeng S, Chen Z, Duan J (2014a) In vitro flowering of orchids. Crit Rev Biotechnol 34:56–76

    Article  PubMed  Google Scholar 

  • Teixeira da Silva JA, Zeng S, Cardoso JC, Dobránszki J, Kerbauy GB (2014b) In vitro flowering of Dendrobium. Plant Cell Tissue Org 119:447–456

    Article  CAS  Google Scholar 

  • Tisserat B, De Mason DA (1985) Occurrence and histological structure of shoots and inflorescence produced from Phoenix dactylifera L. plantlets in vitro. Bull Torrey Bot Club 112:35–42

    Article  Google Scholar 

  • Tisserat B, Galletta PD (1995) In vitro flowering and fruiting of Capsicum frutescens L. Hortscience 30:130–132

    Google Scholar 

  • Tisserat B, Galletta PD (1988) In vitro flowering in Amaranthus. Hortscience 23:210–212

    CAS  Google Scholar 

  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KP, Gaur P, Munier-Jolain N, Larmure A, Voisin A-S, Sharma H, Pande S, Sharma M, Krishnamurthy L, Zaman M (2012) Adaptationof grain legumes to climate change: a review. Agron Sustain Dev 32:31–44

    Article  Google Scholar 

  • Vince-Prue D (1981) Daylight and photoperiodism. In: Smith H (ed) Plants and the daylight spectrum. Academic Press Inc, London, pp 223–242

    Google Scholar 

  • Wang S, Tang L, Chen F (2001) In vitro flowering of bitter melon. Plant Cell Rep 20:393–397

    Article  CAS  PubMed  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  PubMed  CAS  Google Scholar 

  • Weller JL, Beauchamp N, Kerckhoffs LHJ, Platten JD, Reid JB (2001) Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J 26:283–294

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Zhang P, Wang H, Lu Z, Liu C, Liu H, Yan G (2016) How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations? Euphytica 209:113–119

    Article  CAS  Google Scholar 

  • Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang J (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    Article  PubMed  Google Scholar 

  • Zhang T (2007) Studies on in vitro flowering and fruiting of Perilla frutescens. Agri Sci China 6:33–37

    Article  Google Scholar 

  • Zheng Z, Wang HB, Chen GD, Yan G, Liu CJ (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 91:311–316

    Article  Google Scholar 

  • Zhou Y, Singh BR (2002) Red light stimulates flowering and anthocyaninbiosynthesis in American cranberry. Plant Growth Regul 38:165–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Croser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Croser, J. et al. (2018). In Vitro-Assisted Compression of Breeding Cycles. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_14

Download citation

Publish with us

Policies and ethics