Skip to main content

Metal-Based Nanomaterials and Oxidative Stress in Plants: Current Aspects and Overview

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles

Abstract

Oxidative stress is one of the main mechanisms of metal toxicity, both at the nano and non-nanoscale forms. Thus, several molecular and biochemical parameters related with the antioxidant (AOX) stress responses or resulting cellular damages could be extremely useful as early warning indicators of the phytotoxicity of nanomaterials (NMs). Within this context, this chapter aimed at compiling all the data regarding the oxidative stress-induced responses of plants to the most used metal-based NMs and to perceive if the existing data could be used for risk assessment purposes. The available data showed that the plant AOX defense system is responsive to NM, at least when plants are exposed at given concentrations; however, the interplay between different enzymes and AOX metabolites is quite variable between species and exposure conditions. More concerning is the usefulness of available data for risk assessment purposes, due to the great variability of NMs tested (e.g., different sizes), exposure procedures, and duration and experimental designs established, which make ecotoxicological data for each NM almost unique. Despite that, and using a deterministic approach based on assessment factors, a generic predicted no-effect concentration (PNEC) value < 10 mg kg−1 of soil is suggested for oxidative stress in plants (taking lipid peroxidation as endpoint) caused by the metal-based NM addressed in this chapter. Nevertheless, a systematic approach is urgently needed to collect ecotoxicological data for reducing the uncertainty of this former risk limit proposed. The link between oxidative stress in plants and effects at the individual, population, and community levels also needs to be addressed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrees M, Ali S, Rizwan M et al (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  • Agency, USEP (2007) Final Nanotechnology White Paper. EPA 100/B-07/001. Office of the Science Advisor Washington

    Google Scholar 

  • Albanese A, Sykes EA, Chan WC (2010) Rough around the edges: the inflammatory response of microglial cells to spiky nanoparticles. ACS Nano 4:2490–2493

    Article  PubMed  CAS  Google Scholar 

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amooaghaie R, Norouzi M, Saeri M (2016) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 955:441–455

    Google Scholar 

  • Andreescu D, Bulbul G, Özel RE et al (2014) Applications and implications of nanoceria reactivity: measurement tools and environmental impact. Environ Sci Nano 1(5):445–458

    Article  CAS  Google Scholar 

  • Anjum NA, Adam V, Kizek R et al (2015) Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  PubMed  CAS  Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  PubMed  CAS  Google Scholar 

  • Barrena R, Casals E, Colón J et al (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  PubMed  CAS  Google Scholar 

  • Barrios AC, Rico CM, Trujillo-Reyes J et al (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles bulk cerium oxide cerium acetate and citric acid on tomato plants. Sci Total Environ 563:956–964

    Article  PubMed  CAS  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  PubMed  CAS  Google Scholar 

  • Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746

    Article  CAS  Google Scholar 

  • Bour A, Mouchet F, Silvestre J et al (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777

    Article  PubMed  CAS  Google Scholar 

  • Boxall P, Purcell J, Wright PM (2008) Human resource management: scope analysis and significance. In: Boxall P, Purcell J, Wright PM (eds) The Oxford handbook of human resource management. Oxford University Press, Oxford, pp 1–18. https://doi.org/10.1093/oxfordhb/9780199547029.003.0001

    Chapter  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE et al (2009) Copper homeostasis. New Phytol 182:799–816

    Article  PubMed  CAS  Google Scholar 

  • Çekiç FÖ, Ekinci S, İnal MS et al (2017) Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turk J Biol 41(5):700–707

    Article  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  PubMed  CAS  Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL et al (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9:1137–1149

    Article  CAS  Google Scholar 

  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E et al (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L.). Plant Physiol Biochem 84:277–285

    Article  PubMed  CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S et al (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163

    Article  PubMed  CAS  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125

    Article  CAS  Google Scholar 

  • Dionysiou DD (2004) Environmental applications and implications of nanotechnology and nanomaterials. J Environ Eng 130:723–724

    Article  CAS  Google Scholar 

  • Doğaroğlu ZG, Köleli N (2017) TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Clean (Weinh) 45(11):1700096

    Google Scholar 

  • Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  PubMed  CAS  Google Scholar 

  • Du W, Gardea-Torresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49(19):11884–11893

    Article  PubMed  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82. https://doi.org/10.1016/j.chemosphere.2012.04.020

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250:318–332

    Article  PubMed  CAS  Google Scholar 

  • Fayez KA, El-Deeb BA, Mostafa NY (2017) Toxicity of biosynthetic silver nanoparticles on the growth cell ultrastructure and physiological activities of barley plant. Acta Physiol Plant 39(7):155

    Article  CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee D (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    Article  PubMed  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gorka DE, Osterberg JS, Gwin CA et al (2015) Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol 49(16):10093–10098

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Grande F, Tucci P (2016) Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16(9):762–769

    Article  PubMed  CAS  Google Scholar 

  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Gui X, Zhang Z, Liu S et al (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10(8):e0134261. https://doi.org/10.1371/journal.pone.0134261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (1984) Oxygen toxicity oxygen radicals transition metals and disease. Biochem J 219:1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status knowledge gaps challenges and future needs. Ecotoxicology 17:315–325

    Article  PubMed  CAS  Google Scholar 

  • Hansen SF, Michelson ES, Kamper A et al (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17:438–447

    Article  PubMed  CAS  Google Scholar 

  • Helland A, Wick P, Koehler A et al (2008) Reviewing the environmental and human health knowledge base of carbon nanotubes. Cien Saude Colet 13:441–452

    Article  PubMed  Google Scholar 

  • Hong F, Yang F, Liu C et al (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L et al (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185

    Article  PubMed  CAS  Google Scholar 

  • Horie M, Fukui H, Nishio K et al (2011) Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J Occup Health 53:64–74

    Article  PubMed  CAS  Google Scholar 

  • Hutter E, Boridy S, Labrecque S et al (2010) Microglial response to gold nanoparticles. ACS Nano 4:2595–2606

    Article  PubMed  CAS  Google Scholar 

  • Javed R, Mohamed A, Yücesan B et al (2017) CuO nanoparticles significantly influence in vitro culture steviol glycosides and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell Tiss Org Cult 131:611–620

    Article  CAS  Google Scholar 

  • Jiang HS, Yin LY, Ren NN et al (2017) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11(2):157–167

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Fan X, Li X et al (2017) Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ Pollut 228:517–527

    Article  CAS  PubMed  Google Scholar 

  • Kaveh R, Li YS, Ranjbar S et al (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644

    Article  PubMed  CAS  Google Scholar 

  • Keller A, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Khaydarov RR, Khaydarov RA, Gapurova O et al 2009. Antimicrobial effects of silver nanoparticles synthesized by an electrochemical method. Nanostruct Mater Adv Technol App 215–218

    Google Scholar 

  • Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim TH, Kim M, Park HS et al (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100((4):1033–1043

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE et al (2008) Nanomaterials in the environment: behavior fate bioavailability and effects. Environ Toxicol Chem 27:1825–1851

    Article  PubMed  CAS  Google Scholar 

  • Koce JD, Drobne D, Klančnik K et al (2014) Oxidative potential of ultraviolet-A irradiated or nonirradiated suspensions of titanium dioxide or silicon dioxide nanoparticles on Allium cepa roots. Environ Toxicol Chem 33(4):858–867

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  PubMed  CAS  Google Scholar 

  • Kurwadkar S, Pugh K, Gupta A et al (2014) Nanoparticles in the environment: occurrence distribution and risks. J Hazard Toxic Radioact Waste 19(3)

    Article  CAS  Google Scholar 

  • Landa P, Dytrych P, Prerostova S et al (2017) Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles bulk material and ionic copper. Environ Sci Technol 51:10814–10824

    Article  PubMed  CAS  Google Scholar 

  • Le Van N, Ma C, Shang J et al (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim S, Kim S et al (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant Fagopyrum esculentum. Environ Sci Pollut Res 20:848–854

    Article  CAS  Google Scholar 

  • Li CC, Wang YJ, Dang F et al (2016) Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances. J Hazard Mater 308:21–28

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • López-Moreno ML, Avilés LL, Pérez NG et al (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y et al (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Kabengi NJ, Bertsch PM et al (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang P, Zhang Z et al (2015) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9(2):262–270

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Liu H, Guo H et al (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3(6):1369–1379

    Article  CAS  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Bandyopadhyay S et al (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287

    Article  CAS  PubMed  Google Scholar 

  • Manna I, Bandyopadhyay M (2017) Engineered nickel oxide nanoparticle causes substantial physicochemical perturbation in plants. Front Chem 5:92. https://doi.org/10.3389/fchem.2017.00092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manzo S, Rocco A, Carotenuto R et al (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res 18:756–763

    Article  CAS  Google Scholar 

  • Masarovičová E, Kráľová K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20:9–22

    Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230

    Article  PubMed  CAS  Google Scholar 

  • Mozafari A, Havas F, Ghaderi N (2017) Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tissue Organ Cult 1–13

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138

    Article  PubMed  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014a) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth root system development root lignificaion and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014b) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162:342–352

    Article  PubMed  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    Article  PubMed  CAS  Google Scholar 

  • Nair PMG, Chung IM (2017) Evaluation of stress effects of copper oxide nanoparticles in Brassica napus L. seedlings. 3 Biotech 7:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  PubMed  CAS  Google Scholar 

  • Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  PubMed  CAS  Google Scholar 

  • OECD (2006) Test No. 208: terrestrial plant test: seedling emergence and seedling growth test. OECD Publishing, Paris

    Google Scholar 

  • Osborne OJ, Lin S, Chang CH et al (2015) Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 9:9573–9584

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist NM, Seisenbaeva GA, Svedlindh P et al (2017) Maghemite nanoparticles acts as nanozymes improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res Lett 12(1):631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira SP, Jesus F, Aguiar S et al (2017) Phytotoxicity of silver nanoparticles to Lemna minor: surface coating and exposure period-related effects. Sci Total Environ 618:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227

    Article  PubMed  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Praveen A, Khan E, Perwez M et al (2017) Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J Plant Growth Regul 1–13

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  PubMed  CAS  Google Scholar 

  • Rajeshwari A, Kavitha S, Alex SA et al (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environ Sci Pollut Res 22(14):11057–11066

    Article  CAS  Google Scholar 

  • Rauscher H, Roebben G, Amenta V et al (2014) Towards a review of the EC recommendation for a definition of the term “nanomaterial”. EU. https://doi.org/10.2788/36237

  • Rico CM, Hong J, Morales MI et al (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, McCreary R et al (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118

    Article  PubMed  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  PubMed  CAS  Google Scholar 

  • Salehi H, Chehregani A, Lucini L et al (2018) Morphological proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ 616:1540–1551

    Article  PubMed  CAS  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot 26:217037

    Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Magaye R, Castranova V et al (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva S, Craveiro SC, Oliveira H et al (2017) Wheat chronic exposure to TiO2-nanoparticles: cyto-and genotoxic approach. Plant Physiol Biochem 121:89–98

    Article  PubMed  CAS  Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A et al (2016) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere 165:442–452

    Article  PubMed  CAS  Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A et al (2018) SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Sci Total Environ 622:517–525

    Article  PubMed  CAS  Google Scholar 

  • Song U, Jun H, Waldman B et al (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  PubMed  CAS  Google Scholar 

  • Spengler A, Wanninger L, Pflugmacher S (2017) Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata. Aquat Toxicol 190:32–39

    Article  PubMed  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbühler K et al (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Yin N, Wen R et al (2016) Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 52:210–221

    Article  PubMed  CAS  Google Scholar 

  • Tassi E, Giorgetti L, Morelli E et al (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58

    Article  PubMed  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Tripathi DK, Singh S, Singh S et al (2017a) An overview on manufactured nanoparticles in plants: uptake translocation accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  PubMed  CAS  Google Scholar 

  • Tripathi A, Liu S, Singh PK et al (2017b) Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant Gene 11:255–264

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Shweta Singh Srivastava PK et al (2017c) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2016.06.015

  • Tsonev T, Lidon FJC (2012) Zinc in plants – an overview. Emir J Food Agric 24:322–333

    Google Scholar 

  • Vishwakarma K, Upadhyay N, Singh J et al (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Kou X, Pei Z et al (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J et al (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Liu X, Shi Z et al (2016a) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – a soil microcosm experiment. Chemosphere 147:88–97

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xu L, Zhao J et al (2016b) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity parent-progeny transfer and gene expression. Environ Sci Technol 50:6008–6016

    Article  PubMed  CAS  Google Scholar 

  • Whatmore RW (2006) Nanotechnology—what is it? Should we be worried? Occup Med 56:295–299

    Article  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138. https://doi.org/10.1080/17435390902725914

    Article  CAS  Google Scholar 

  • Yang X, Pan H, Wang P et al (2017) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322:292–300

    Article  PubMed  CAS  Google Scholar 

  • Yin N, Liu Q, Liu J et al (2013) Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9(9–10):1831–1841

    Article  PubMed  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  PubMed  Google Scholar 

  • Zafar H, Ali A, Ali JS et al (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas J et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2 heat shock protein and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR et al (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15:260–266

    Article  PubMed  CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses – a review. Plant Physiol Biochem 110:236–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soares, C., Pereira, R., Fidalgo, F. (2018). Metal-Based Nanomaterials and Oxidative Stress in Plants: Current Aspects and Overview. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_8

Download citation

Publish with us

Policies and ethics