Skip to main content
Log in

A Mechanistic Study on the Toxic Effect of Copper Oxide Nanoparticles in Soybean (Glycine max L.) Root Development and Lignification of Root Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles (CuONPs) are widely used in several products and their release into the environment can cause toxicity to major food crops. In this study, toxic responses as a result of CuONPs exposure were studied in soybean (Glycine max L.) seedlings. The plants were grown in 1/2 strength Murashige and Skoog medium containing 0, 50, 100, 200, 400, and 500 mg/L of CuONPs in a growth chamber at 26 ± 2 °C with 16/8 h light/dark photoperiod for 14 days. The toxic effects of CuONPs were tested on the shoot and root development, total chlorophyll content, hydrogen peroxide generation, peroxidase (POD) enzyme activity, and lignification of root cells. The mRNA expression of different genes involved in lignin biosynthesis viz. phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), cinnamyl alcohol dehydrogenase (CAD), peroxidase 2 (POD2), peroxidase 4 (POD4), and peroxidase 7 (POD7) was studied using real-time polymerase chain reaction. Exposure to 500 mg/L of CuONPs significantly reduced the shoot growth, weight, and total chlorophyll content. However, the root length and fresh weights were significantly reduced at all concentrations of CuONPs exposure. Exposure to 100, 200, 400, and 500 mg/L of CuONPs significantly increased the hydrogen peroxide level, POD activity, and lignin contents of roots. Treatment with 2,7-dichlorofluorescein diacetate indicated a concentration-dependent increase in reactive oxygen species generation in roots. Staining with phloroglucinol-HCl revealed a concentration dependant increase in lignification of root cells. The expression levels of PAL, C4H, and CAD genes were significantly up-regulated upon exposure to 100, 200, and 400 mg/L of CuONPs. Significant up-regulation in the expression levels of POD2 and POD4 genes was observed upon exposure to 100, 200, 400, and 500 mg/L of CuONPs. Exposure to 200, 400, and 500 mg/L of CuONPs resulted in significant up-regulation of POD7 gene. These results for the first time show that exposure to CuONPs causes enhanced lignification of root cells and thereby affect root development in soybean seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen Y, Wang D, Zhu X, Zheng X, Feng L (2012) Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ Sci Technol 46:12452–12458

    Article  CAS  PubMed  Google Scholar 

  2. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  PubMed  Google Scholar 

  3. Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in waste water and waste water sludge-evidence and impacts. Waste Manag 30:504–520

    Article  CAS  PubMed  Google Scholar 

  4. Oleszczuk P, Josko I, Xing BS (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442

    Article  CAS  PubMed  Google Scholar 

  5. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  6. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  7. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  PubMed  Google Scholar 

  8. Lin CC, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861

    Article  CAS  Google Scholar 

  9. Xu Z, Zhang D, Hu J, Zhou X et al (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinforma 10(Suppl 11):S3

    Article  Google Scholar 

  10. Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  11. Ma¨der M, Fu¨ssl R (1982) Role of peroxidase in lignification of tobacco cells: regulation by phenolic compounds. Plant Physiol 70:1132–1134

    Article  Google Scholar 

  12. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–146

    Article  CAS  Google Scholar 

  13. Xiong ZT, Wang H (2005) Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekiensis Rupr.). Environ Toxicol 20:188–194

    Article  CAS  PubMed  Google Scholar 

  14. Lequeux H, Hermans C, Lutts S, Nathalie V (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    Article  CAS  PubMed  Google Scholar 

  15. Finger-Teixeira A, Ferrarese Mde L, Soares AR, da Silva D, Ferrarese-Filho O (2010) Cadmium-induced lignification restricts soybean root growth. Ecotoxicol Environ Saf 73:1959–1964

    Article  CAS  PubMed  Google Scholar 

  16. Polle A, Otter T, Seifert F (1994) Apoplastic peroxidase and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol 106:53–60

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Klotz KL, Liu TTY, Liu L, Largimini L (1998) Expression of the tobacco anionic peroxidase gene is tissue-specific and development regulated. Plant Mol Biol 36:509–520

    Article  CAS  PubMed  Google Scholar 

  18. Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification and molecular level changes. Environ Sci Pollut Res. doi:10.1007/s11356-014-3210-3

    Google Scholar 

  19. USEPA (U.S.Environmental Protection Agency), 1996. Ecological effects test guide-lines: seed germination/root elongation toxicity test, OPPTS850.4200. EPA, Washington

  20. Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots: imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  Google Scholar 

  21. Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  CAS  Google Scholar 

  22. Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140

    Article  CAS  PubMed  Google Scholar 

  23. OECD (Organization for Economic Cooperation and Development) (2004) Proposal for updating guideline 208. Terrestrial plant test: seedling emergence and seedling growth test. Draft document

  24. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:1000126

    Google Scholar 

  25. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agri Sci Technol A2:815–823

    Google Scholar 

  26. Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicol 8:179–188

    Article  CAS  Google Scholar 

  27. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  28. Takeshi M, In Sook ML, Noriyuki S, Takakiro I (1997) Identification of S100b protein as copper-binding protein and its suppression of copper-induced cell damage. J Biol Chem 272:23037–23041

    Article  Google Scholar 

  29. Sandmann G, Boger P (1980) Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol 66:797–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  31. Baldoni A, Von Pinho EVR, Fernandes JS, Abreu VM, Carvalho MLM (2013) Gene expression in the lignin biosynthesis pathway during soybean seed development. Genet Mol Res 12:2618–2624

    Article  CAS  PubMed  Google Scholar 

  32. Raes J, Rohde A, Christensen JH, Van de Peer Y et al (2003) Genome-wide characterization of the lignification tool box in Arabidopsis. Plant Physiol 133:1051–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lagrimini LM (1991) Wound-induced deposition of polyphenols in transgenic plants over expressing peroxidase. Plant Physiol 96:577–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Quiroga M, Guerrero C, Botella MA, Barcelo A, Amaya I, Medina MI, Alonso FJ, Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mazhoudi S, Chaoui A, Ghorbal MH, Elferjani E (1997) Response of antioxidant enzyme to excess copper in tomato (Lycopersicon esculentum Mill). Plant Sci 127:129–137

    Article  CAS  Google Scholar 

  36. Jouili H, Ezzedine EF (2003) Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. C R Biol 326:639–644

    Article  CAS  PubMed  Google Scholar 

  37. Santos WDD, Ferrarese MLL, Nakamura CV, Mourão KSM, Mangolin CA, Ferrarese-Filho O (2008) Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J Chem Ecol 34:1230–1241

    Article  PubMed  Google Scholar 

  38. Fielding JL, Hall JL (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. J Exp Bot 29:969–981

    Article  CAS  Google Scholar 

  39. Gaspar T, Penel C, Castillo FJ, Greppin H (1985) A two step control of basic and acidic peroxidases and its significance for growth and development. Physiol Plant 64:418–423

    Article  CAS  Google Scholar 

  40. Castillo FJ (1986) Extracellular peroxidases as markers of stress? In: Greppin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, pp 419–426

    Google Scholar 

  41. Lamport DTA (1986) Roles for peroxidases in cell wall genesis. In: Greppin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, pp 199–208

    Google Scholar 

  42. Sanchez M, Revilla G, Zarra I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75:415–419

    Article  CAS  Google Scholar 

  43. Li TC, Feg TY, Chen WS, Liu ZH (2001) The acute effect of copper on the levels of indole-3-acetic acid and lignin in peanut roots. Aust J Plant Physiol 28:1–6

    Google Scholar 

Download references

Acknowledgments

This paper was supported by the KU Research Professor Program of Konkuk University.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill Min Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, P.M.G., Chung, I.M. A Mechanistic Study on the Toxic Effect of Copper Oxide Nanoparticles in Soybean (Glycine max L.) Root Development and Lignification of Root Cells. Biol Trace Elem Res 162, 342–352 (2014). https://doi.org/10.1007/s12011-014-0106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0106-5

Keywords

Navigation