Skip to main content

Interplay Between Engineered Nanomaterials (ENMs) and Edible Plants: A Current Perspective

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles

Abstract

Predicted augmentation in the release of engineered nanomaterials (ENMs) into the environment has raised serious concerns. Limited studies on assessment of nanomaterials for their uptake, bioaccumulation, long-term persistence and transport to the next trophic level have been undertaken. Also, the behavior of ENMs largely metals (Ag, Au, etc.) metal oxides (SiO2, CeO2, Fe3O4, CuO, ZnO, Al2O3, NiO, etc.), quantum dots, fullerenes, and carbon nanotubes (SWCNT and MWCNT) with plant system has not been extensively explored and clearly understood. Indeed, plants represent a vital living component of the terrestrial biological environment. Physical and the chemical influence of ENMs on plant cell components exhibit unique significance, as plants provide a major route for ENM transmission to higher organisms through the food chain. Moreover, the questions concerning the fate and behavior of ENMs in plant systems, such as the role of surface area or surface reactivity of ENMs on phytotoxicity, the potential route of entrance to plant vascular tissues, and the role of plant cell walls in internalization of ENMs, are the potential areas for further research. The information gap due to relatively less explored aspects necessitates that the physicochemical attributes of ENMs, viz., elemental composition, shape, size, and surface chemistry, must be sufficiently characterized. Besides, the overall impact of ENMs either positive or negative at environmentally and biologically relevant doses of ENMs, depending upon the species, growth conditions, and growth phase of the plant, must be taken into account for providing a tangible solution to the emerging problems. Thus, the aim of this chapter is to provide a comprehensive overview regarding the uptake, translocation, and biotransformation of ENMs in plant cell/tissue(s) and to discuss the mechanistic aspects for better understanding of the nature of ENM interaction with cellular components and associated hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Zeid HM, Moustafa Y (2014) Physiological and cytogenetic response of wheat and barley to silver nanopriming treatment. Int J Appl Biol Pharm Technol 5:265–278

    CAS  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK et al (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823

    CAS  Google Scholar 

  • Ahmed B, Dwivedi S, Abdin MZ et al (2017) Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 7:40685. https://doi.org/10.1038/srep40685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albersheim P (2011) Plant cell walls: from chemistry to biology. Garland Science, New York

    Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  • Amooaghaie R, Norouzi M, Saeri M (2016) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany. https://doi.org/10.1139/cjb-2016-0194

  • Andersen CP, King G, Plocher M et al (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35:222–2229

    Article  CAS  Google Scholar 

  • Arruda SC, Silva AL, Galazzi RM et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  PubMed  CAS  Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM et al (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 28. https://doi.org/10.1155/2014/641759

  • Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  PubMed  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  PubMed  CAS  Google Scholar 

  • Aubert T, Burel A, Esnault MA et al (2012) Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219:111–118

    Article  PubMed  CAS  Google Scholar 

  • Bagheri S, Shameli K, Abd Hamid SB (2013) Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol-Gel method. J Chem 848205

    Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A et al (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69

    Article  PubMed  CAS  Google Scholar 

  • Barrena R, Casals E, Colon J et al (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297(5582):787–792

    Article  PubMed  CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB et al (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):e34783. https://doi.org/10.1371/journal.pone.0034783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell NA (1990) Biology, 2nd edn. The Benjamin/Cummings Publishing, Redwood City

    Google Scholar 

  • Campbell NA, Reece JB, Urry LA et al (2008). Biology, 8th edn, p 118. ISBN: 978-0-8053-6844-4

    Google Scholar 

  • Cañas JE, Long M, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  PubMed  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C et al (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449

    Article  CAS  Google Scholar 

  • Chalew TEA, Ajmani GS, Huang HO et al (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121:1161–1166

    Article  PubMed Central  Google Scholar 

  • Chekin F, Bagheri S, Abd Hamid SB (2012) Electrochemistry and electro catalysis of cobalt(II) immobilized onto gel assisted synthesized zinc oxide nanoparticle-multi wall carbon nanotube-polycaprolactone composite film: application to determination of glucose. Anal Methods 4:2423–2428

    Article  CAS  Google Scholar 

  • Chekin F, Bagheri S, Abd Hamid SB (2013) Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of l-methionine. Sens Actuators B 177:898–903

    Article  CAS  Google Scholar 

  • Corredor E, Testillano PS, Coronado M-J et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:1–11

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R et al (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):e1

    Article  CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:11

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Dimkpa CO, Latta DE, Mclean JE et al (2013) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW et al (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129

    Article  PubMed  CAS  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C et al (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303

    Article  PubMed  CAS  Google Scholar 

  • Du WC, Sun YY, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  PubMed  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR et al (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  PubMed  CAS  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces-further evidence for a stomatal pathway. Physiol Plant 132:491–502

    Article  PubMed  CAS  Google Scholar 

  • Eichert T, Kurtz SU et al (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    Article  PubMed  CAS  Google Scholar 

  • Elena S, Gusev A, Zaytseva O et al (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132–138

    Article  CAS  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA et al (2016) Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol Res 49:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falcaro P, Ricco R, Yazdi A et al (2016) Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev 307:237–254

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N et al (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106

    Article  PubMed  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  PubMed  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14(1):75–83

    Article  PubMed  CAS  Google Scholar 

  • Galway ME (2006) Root hair cell walls: filling in the framework. Can J Bot 84:613–621

    Article  CAS  Google Scholar 

  • García A, Espinosa R, Delgado L et al (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141

    Article  CAS  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geisler-Lee J, Wang Q, Yao Y et al (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337

    Article  PubMed  CAS  Google Scholar 

  • Getnet Z, Husen A, Fetene M et al (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum (Sorghum bicolor (L.) Moench) varieties-a field trial under drought-prone area in Amhara Regional State, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    PubMed  CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    Article  PubMed  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13. https://doi.org/10.1038/NMAT3890

  • Glenn JB, White SA, Klaine SJ (2012) Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ Toxicol Chem 31:194–201

    Article  PubMed  CAS  Google Scholar 

  • Global Nanotechnology Market Outlook 2022. http://www.prnewswire.com/news-releases/global-nanotechnology-market-outlook-2022-300194052.html. Accessed 10 Apr 2017

  • Gottschalk F, Sonderer T, Scholz RW et al (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. https://doi.org/10.1007/s10646-008-0206-0

  • Hawthorne J, Torre-Roche RD, Xing B et al (2014) Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ Sci Technol 48(22):13102–13109

    Article  PubMed  CAS  Google Scholar 

  • Hayyan M, Hashim MA, Al-Nashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC et al (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kiyota M, Aiga I (1995) Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ Pollut (Oxford, UK) 89:255–261

    Article  CAS  Google Scholar 

  • Hodge A, Paterson E, Grayston SJ et al (1998) Characterisation and microbial utilisation of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30:1033–1043

    Article  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C et al (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Peralta-Videa JR, Rico C et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Long D, Wu Y (2009) The homeostasis of phosphatidylcholine and lysophosphatidylcholine in nervous tissues of mice was not disrupted after administration of tri-o-cresyl phosphate. Toxicol Sci 109:276–285

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Li J, Ma L et al (2010) High efficiency transport of quantum dots into plant roots with the aid of Silwet L-77. Plant Physiol Biochem 48:703–709

    Article  PubMed  CAS  Google Scholar 

  • Huang J (1986) Ultrastructure of bacterial penetration in plants. Annu Rev Phytopathol 24:141–157

    Article  Google Scholar 

  • Huang X, Stein BD, Cheng H et al (2011). Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5:4037–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn.f.) clones differencing in rejuvenation capacity subjected to drought stress. Silvae Gene 59:124–136

    Article  Google Scholar 

  • Hussain HI, Yi ZF, Rookes JE et al (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676

    Article  Google Scholar 

  • Iannone MF, Groppa MD, de Sousa ML et al (2016) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474

    Article  PubMed  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K et al (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867

    Article  CAS  Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A et al (2013) Global lifecycle emissions of engineered nanomaterials. J Nanopart Res 1692. https://doi.org/10.1007/s11051-013-1692-4

  • Keller AA, Vosti W, Wang H et al (2014) Release of engineered nanomaterials from personal care products throughout their life cycle. J Nanopart Res 16:2489

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27:49–55

    Article  CAS  Google Scholar 

  • Kim J, Lee Y, Kim E et al (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485

    Article  PubMed  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  PubMed  CAS  Google Scholar 

  • Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK (2014) Nanotechnology in agri-food sector. Cri Rev Food Sci Nutri 54:975–984

    Article  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam C, James JT, McCluskey R et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  PubMed  CAS  Google Scholar 

  • Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62

    Article  PubMed  CAS  Google Scholar 

  • Lang X, Hirata A, Fujita T et al (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  PubMed  CAS  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  PubMed  CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S et al (2014) Fate of pristine TiO2 nanoparticles and aged paint containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26

    Article  PubMed  CAS  Google Scholar 

  • Lee W-M, An Y-J, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  CAS  Google Scholar 

  • Lei X, CeHui M, XiHong L et al (2011) Toxicity of copper oxide nanoparticles to the seed germination of Chinese cabbage. J Agro Environ Sci 30:1830–1835

    Google Scholar 

  • Levard C, Hotze EM, Lowry GV et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Li F, Luo C et al (2009a) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161:1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q et al (2009b) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Ljubimova JY, Holler E (2012) Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine 7:1467–1470

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA et al (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC et al (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  PubMed  CAS  Google Scholar 

  • Lu PT, Cao JP, He SG et al (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57:196–202

    Article  CAS  Google Scholar 

  • Lucas WJ, Jung-Youn L (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Liu C, Qu C et al (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178

    Article  CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y et al (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, He X, Zhang P et al (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–753

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B et al (2013a) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778

    Article  CAS  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013b) Phytotoxicity and uptake of nanoscale zerovalent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  PubMed  CAS  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32

    Google Scholar 

  • Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA et al (2016) Cerium biomagnification in a terrestrial food chain: Influence of particle size and growth stage. Environ Sci Technol 50:6782–6792

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Fernández D, Vítková M, Bernal MP et al (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226:1–4

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  PubMed  CAS  Google Scholar 

  • McCann MC, Wells B, Roberts K (1990) Direct visualization of crosslinks in the primary plant cell wall. J Cell Sci 96:323–334

    Google Scholar 

  • Mehrian SK, De Lima R (2016) Nanoparticles cyto and genotoxicity in plants: mechanisms and abnormalities. Environ Nanotechnol Monit Manage 6:184–193

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012a) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Miralles P, Johnson E, Church TL et al (2012b) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mondal A, Basu R, Das S et al (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. Nanopart Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Moreno-olivas F, Gant VU Jr, Jonhnson KL et al (2014) Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. J Zhejiang Univ-Sci A (Appl Phys & Eng) 15:618–623

    Article  CAS  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138

    Article  PubMed  CAS  Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    Article  PubMed  CAS  Google Scholar 

  • Mushtaq YK (2011) Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health 46:1732–1735

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–435

    Article  PubMed  CAS  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE et al (2011) Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa plant. Russ J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan, London

    Google Scholar 

  • Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  PubMed  CAS  Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M et al (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59:3051–3068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozyigit II, Filiz E, Vatansever R et al (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons JG, Lopez ML, Gonzalez CM et al (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154

    PubMed  CAS  Google Scholar 

  • Pearse BM (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73:1255–1259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L et al (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    Article  PubMed  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S et al (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109

    Article  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332

    Article  PubMed  CAS  Google Scholar 

  • Priester JH, Gea Y, Mielkea RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:14734–14735

    CAS  Google Scholar 

  • Pryor W (1991) The antioxidant nutrients and disease prevention-what, do we know and what, do we need to find out? Am J Clin Nulr 53(1 Suppl):391S–393S

    Article  CAS  Google Scholar 

  • Qi H, Hegmann T (2008) Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem 18:3288–3294

    Article  CAS  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  PubMed  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar J, Singh S et al (2014) MgO nanoparticles biosynthesis and its effect on chlorophyll contents in the leaves of Clusterbean (Cyamopsis tetragonoloba L.). Adv Sci Eng Med 6:538–545

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S et al (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  PubMed  CAS  Google Scholar 

  • Raliya R, Franke C, Chavalmane S et al (2016a) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288. https://doi.org/10.3389/fpls.2016.01288

    Article  PubMed  PubMed Central  Google Scholar 

  • Raliya R, Tarafdar JC, Biswas P (2016b) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64:3111–3118

    Article  PubMed  CAS  Google Scholar 

  • Rezaei F, Moaveni P, Mozafari H (2015) Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr-e-Qods, Iran. Biol Forum 7:957–964

    CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rico CM, Morales MI, McCreary R et al (2013a) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118

    Article  PubMed  CAS  Google Scholar 

  • Rico CM, Hong J, Morales MI et al (2013b) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558

    Article  CAS  Google Scholar 

  • Riesen O, Feller U (2005) Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J Plant Nutr 28:421–430

    Article  CAS  Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  PubMed  CAS  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Safari J, Zarnegar Z (2014) Advanced drug delivery systems: nanotechnology of health design. A review. J Saudi Chem Soc 18:85–99

    Article  CAS  Google Scholar 

  • Saharan V, Sharma G, Yadav M et al (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  PubMed  CAS  Google Scholar 

  • Samaj J (2012) Endocytosis in plants. Springer, Berlin. https://doi.org/10.1007/978-3-642-32463-5

  • Samaj J, Baluska F, Voigt B et al (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sattelmacher B, Horst WJ (2007) The apoplast of higher plants: compartment of storage, transport and reactions-the significance of the apoplast for the mineral nutrition of higher plants. Springer, Dordrecht

    Google Scholar 

  • Schaller J, Brackhage C, Paasch S et al (2013) Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Sci Total Environ 442:6–9

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot (Oxford, UK) 95:1069–1073

    Article  Google Scholar 

  • Schwab F, Zhai G, Kern M et al (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology 1–22. https://doi.org/10.3109/17435390.2015.1048326

  • Schwabe F, Schulin R, Limbach LK et al (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520

    Article  PubMed  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Serag MF, Kaji N, Venturelli E et al (2011a) A functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270

    Article  PubMed  CAS  Google Scholar 

  • Serag MF, Kaji N, Gaillard C et al (2011b) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Braeckmans K, Habuchi S et al (2012a) Spatiotemporal visualization of subcellular dynamics of carbon nanotubes. Nano Lett 12:6145–6151

    Article  PubMed  CAS  Google Scholar 

  • Serag MF, Kaji N, Habuchi S et al (2012b) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856–4862

    Article  CAS  Google Scholar 

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA et al (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643

    Article  PubMed  CAS  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB et al (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990

    Article  CAS  Google Scholar 

  • Shen CX, Zhang QF, Li J et al (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT et al (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113

    Article  Google Scholar 

  • Shi JY, Abid AD, Kennedy IM et al (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498

    Article  CAS  Google Scholar 

  • Singh P, Singh R, Borthakur A et al (2016) Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energ Ecol Environ 1:131–140

    Article  Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON et al (2011) Multi-walled сarbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3:99–106

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Su MY, Hong FS, Liu C et al (2007) Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 131:101

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multiwalled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tarafdar J, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    Article  CAS  Google Scholar 

  • Taylor R, Walton DRM (1993) The chemistry of fullerenes. Nature 363:685–693

    Article  CAS  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CWN et al (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9:e93793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS et al (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    Article  PubMed  CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM et al (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nano-agriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Torre-Roche RDL, Hawthorne J, Deng Y et al (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  CAS  Google Scholar 

  • Trevisan M, Browne R, Ram M et al (2001) Correlates of markers of oxidative status in the general population. Am J Epidemiol 154:348–356

    Article  PubMed  CAS  Google Scholar 

  • Vilela Neto OP (2014) Intelligent computational nanotechnology: the role of computational intelligence in the development of nanoscience and nanotechnology. J Comput Theor Nanosci 11:928–944

    Article  CAS  Google Scholar 

  • Vittori Antisari L, Carbone S, Gatti A et al (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res Int 22:1841–1853

    Article  PubMed  CAS  Google Scholar 

  • Wahab R, Kaushik N, Khan F et al (2016) Self-styled ZnO nanostructures promotes the cancer cell damage and suppress the epithelial phenotype of glioblastoma. Sci Rep 6:19950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XM, Gao FQ, Ma LL et al (2008) Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. Biol Trace Elem Res 126:280–289

    Article  CAS  Google Scholar 

  • Wang H, Kou X, Pei Z et al (2011a) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  PubMed  CAS  Google Scholar 

  • Wang SH, Kurepa J, Smalle JA (2011b) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–820

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J et al (2011c) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J et al (2012a) Xylem and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Xingmao M, Wen Z et al (2012b) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013a) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417

    Article  CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E et al (2013b) Fate of ZnO nanoparticles in soils and Cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Liu X, Shi Z et al (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants-a soil microcosm experiment. Chemosphere 147:88–97

    Article  PubMed  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S et al (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson JL, Fang T, Dimkpa CO et al (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112

    Article  PubMed  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wibowo D, Zhao CX, Peters BC et al (2014) Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 62:12504–12511

    Article  PubMed  CAS  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  PubMed  CAS  Google Scholar 

  • Willats WG, McCartney L, Mackie W et al (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Hudson JS, Lu Q et al (2006) Coating single-walled carbon nanotubes with phospholipids. J Phys Chem B 110:2475–2478

    Article  PubMed  CAS  Google Scholar 

  • Xi ZG, Chao FH, Yang DF et al (2004) The effects of DNA damage induced by acetaldehyde. Huan Jing Ke Xue 25:102–105

    PubMed  CAS  Google Scholar 

  • Yan SH, Zhao L, Li H et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Ma Y (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong FS, You WJ et al (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Liu C, Gao F et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Gondikas AP, Marinakos SM et al (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Yin HC, Liu QJ, Lin Q et al (2005) Inhibitory effects of nano-TiO2 loaded Pd on cyanobacteria growth. Acta Bot Boreali-Occidentalia Sin 25:1884–1887

    CAS  Google Scholar 

  • Yoon SJ, Kwak JI, Lee WM et al (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137

    Article  PubMed  CAS  Google Scholar 

  • Zafar H, Ali A, Ali JS et al (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Zangi R, Filella M (2012) Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem Biol Interact 197:47–57

    Article  PubMed  CAS  Google Scholar 

  • Zhai G, Walters KS, Peate DW et al (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P et al (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZY, He X, Zhang HF et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2012a) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2012b) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA et al (2012a) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M et al (2012b) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

  • Zhu HW, Xu CL, Wu DH et al (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569):884–886

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  PubMed  CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W et al (2016) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, B., Khan, M.S., Saquib, Q., Al-Shaeri, M., Musarrat, J. (2018). Interplay Between Engineered Nanomaterials (ENMs) and Edible Plants: A Current Perspective. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_2

Download citation

Publish with us

Policies and ethics