Skip to main content
Log in

Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

We have studied the effect of the engineered nanomaterial Taunit, containing multiwalled carbon nanotubes (MWCNTs), on the growth of Onobrychis arenaria seedlings and investigated whether affected plants uptake and accumulate MWCNTs. We found that 100 μg/mL and 1000 μg/mL of Taunit stimulated the growth of roots and stems, and enhanced the peroxidase activity in these parts of plants. Microscopy studies showed the presence of MWCNTs in the root and leaf tissues of seedlings exposed to Taunit, suggesting that MWCNTs have a capacity to penetrate the cell walls, accumulate in roots and translocate to the leaves. Thus the stimulating effect of MWCNTs on seedlings of O. arenaria may be associated with the primary uptake and accumulation of MWCNTs by plant roots followed by translocation to the other plant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handy R D, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 2008, 17(5):315–325

    Article  CAS  Google Scholar 

  2. Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 2006, 32(8):967–976

    Article  CAS  Google Scholar 

  3. Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. The Science of the total environment, 2010, 408(16):3053–3061

    Article  CAS  Google Scholar 

  4. Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 2008, 17(5):372–386

    Article  CAS  Google Scholar 

  5. Ruffini Castiglione M, Cremonini R. Nanoparticles and higher plants. Cariologia, 2009, 62:161–165

    Google Scholar 

  6. Berhanu D, Dybowska A, Misra S K, Stanley C J, Ruenraroengsak P, Boccaccini A R, Tetley T D, Luoma S N, Plant J A, Valsami-Jones E. Characterisation of carbon nanotubes in the context of toxicity studies. Environmental Health: A Global Access Science Source, 2009, 8(Suppl 1):S3

    Google Scholar 

  7. Yuliang Z, Genmei X, Zhifang C. Are carbon nanotubes safe? Nature Nanotechnology, 2008, 4:191–192

    Google Scholar 

  8. Poland C A, Duffin R, Kinloch I, Maynard A, Wallace W A, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 2008, 3(7):423–428

    Article  CAS  Google Scholar 

  9. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris A S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3(10):3221–3227

    Article  CAS  Google Scholar 

  10. Wild E, Jones K C. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environmental Science & Technology, 2009, 43(14):5290–5294

    Article  CAS  Google Scholar 

  11. Lin S, Reppert J, Hu Q, Hudson J S, Reid M L, Ratnikova T A, Rao A M, Luo H, Ke P C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 2009, 5(10):1128–1132

    CAS  Google Scholar 

  12. Cañas J E, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee E H, Olszyk D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 2008, 27(9):1922–1931

    Article  Google Scholar 

  13. Tkachev A G, Zolotukhin I V. The equipment and technique for synthesis of solid-state nanostructures. Moscow. Mashinostroenie, 2007, 1:316

    Google Scholar 

  14. Padu E K. Properties of peroxidases and phenylalanine ammonialyase in wheat stems during secondary cell wall formation and lignifications. Physiologia Plantarum, 1995, 42:408–415

    Google Scholar 

  15. Boyarkin A N. The method for fast evaluation of peroxidase activity. Russian Journal of Biochemistry, 1951, 16:352–355

    CAS  Google Scholar 

  16. Pausheva Z P. Plant Cell Cytology, Practical Approach. Moscow: Kolos, 1974, 288

    Google Scholar 

  17. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 2009, 75(7):850–857

    Article  CAS  Google Scholar 

  18. Chehab E W, Eich E, Braam J. Thigmomorphogenesis: a complex plant response to mechano-stimulation. Journal of Experimental Botany, 2008, 60(1):43–56

    Article  Google Scholar 

  19. Ostin A, Kowalyczk M, Bhalerao R P, Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiology, 1998, 118(1):285–296

    Article  CAS  Google Scholar 

  20. Woodward A W, Bartel B. Auxin: regulation, action, and interaction. Annals of Botany, 2005, 95(5):707–735

    Article  CAS  Google Scholar 

  21. Andreeva V A. Peroxidase and Its Role in Plant Defense Mechanism. Moscow: Nauka, 1988, 128

  22. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 2009, 9(3):1007–1010

    Article  CAS  Google Scholar 

  23. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano, 2011, 5(1):493–499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Smirnova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, E., Gusev, A., Zaytseva, O. et al. Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front. Chem. Sci. Eng. 6, 132–138 (2012). https://doi.org/10.1007/s11705-012-1290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1290-5

Keywords

Navigation