Skip to main content

Damage and Fracture of Ductile Sheet Metals: Experiments and Numerical Simulations with New Biaxial Specimens

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

The paper deals with new experiments and corresponding numerical simulations to study the effect of stress state on damage and fracture behavior of ductile sheet metals. These stress-state-dependent processes are characterized by different mechanisms acting on the micro-level and, therefore, details of the stress state characterized by stress triaxiality and the Lode parameter in the critical parts of the specimens are of interest. Newly designed H-specimens are studied in a combined numerical-experimental procedure. Strain fields in critical regions of the specimens have been evaluated by digital image correlation (DIC) technique and compared with the results of finite element simulations. Considering different biaxial loading conditions it is possible to cover a wide range of stress triaxialities and Lode parameters in tension, shear and compression domains and consequently the newly proposed H-specimens facilitate a controlled study of damage and fracture at different stress states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Wierzbicki, T.: A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24, 1071–1096 (2008)

    Article  MATH  Google Scholar 

  2. Bao, Y., Wierzbicki, T.: On the fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81–98 (2004)

    Article  Google Scholar 

  3. Barsoum, I., Faleskog, J.: Rupture mechanisms in combined tension and shear - Experiments. Int. J. Solids Struct. 44, 1768–1786 (2007)

    Article  MATH  Google Scholar 

  4. Becker, R., Needleman, A., Richmond, O., Tvergaard, V.: Void growth and failure in notched bars. J. Mech. Phys. Solids 36, 317–351 (1988)

    Article  Google Scholar 

  5. Bonora, N., Gentile, D., Pirondi, A., Newaz, G.: Ductile damage evolution under triaxial state of stress: theory and experiments. Int. J. Plast. 21, 981–1007 (2005)

    Article  MATH  Google Scholar 

  6. Brünig, M.: An anisotropic ductile damage model based on irreversible thermodynamics. Int. J. Plast. 19, 1679–1713 (2003)

    Article  MATH  Google Scholar 

  7. Brünig, M., Chyra, O., Albrecht, D., Driemeier, L., Alves, M.: A ductile damage criterion at various stress triaxialities. Int. J. Plast. 24, 1731–1755 (2008)

    Article  MATH  Google Scholar 

  8. Brünig, M., Albrecht, D., Gerke, S.: Numerical analyses of stress-triaxiality-dependent inelastic deformation behavior of aluminum alloys. Int. J. Damage Mech. 20, 299–317 (2011)

    Article  Google Scholar 

  9. Brünig, M., Gerke, S., Hagenbrock, V.: Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int. J. Plast. 50, 49–65 (2013)

    Article  Google Scholar 

  10. Brünig, M., Brenner, D., Gerke, S.: Stress state dependence of ductile damage and fracture behavior: Experiments and numerical simulations. Eng. Fract. Mech. 141, 152–169 (2015)

    Article  Google Scholar 

  11. Brünig, M., Gerke, S., Schmidt, M.: Biaxial experiments and phenomenological modeling of stress-state-dependent ductile damage and fracture. Int. J. Fract 200, 63–76 (2016). https://doi.org/10.1007/s10704-016-0080-3

    Article  Google Scholar 

  12. Demmerle, S., Boehler, J.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids. 41, 143–181 (1993)

    Article  Google Scholar 

  13. Driemeier, L., Brünig, M., Micheli, G., Alves, M.: Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 42, 207–217 (2010)

    Article  Google Scholar 

  14. Dunand, M., Mohr, D.: On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode angles. J. Mech. Phys. Solids. 59, 1374–1394 (2011)

    Article  MATH  Google Scholar 

  15. Faleskog, J., Barsoum, I.: Tension-torsion fracture experiments - Part I: experiments and a procedure to evaluate the equivalent plastic strain. Int. J. Solids. Struct. 50, 4241–4257 (2013)

    Article  Google Scholar 

  16. Gao, X., Zhang, G., Roe, C.: A study on the effect of the stress state on ductile fracture. Int. J. Damage Mech. 19, 75–94 (2010)

    Article  Google Scholar 

  17. Gerke, S.: Damage and fracture of ductile metals under dynamic loading conditions. Ph.D thesis, UniversitÃd’t der Bundeswehr, MÃijnchen (2013)

    Google Scholar 

  18. Gerke, S., Adulyasak, P., Brünig, M.: New biaxially loaded specimens for the analysis of damage and fracture in sheet metals. Int. J. Solids Struct. (2017). https://doi.org/10.1016/j.ijsolstr.2017.01.027

  19. Graham, S., Zhang, T., Gao, X., Hayden, M.: Development of a combined tension-torsion experiment for calibration of ductile fracture models under conditions of low triaxiality. Int. J. Mech. Sci. 54, 172–181 (2012)

    Article  Google Scholar 

  20. Haltom, S., Kyriakides, S., Ravi-Chandar, K.: Ductile failure under combined shear and tension. Int. J. Solids. Struct. 50, 1507–1522 (2013)

    Article  Google Scholar 

  21. Kulawinski, D., Nagel, K., Henkel, S., Hübner, P., Fischer, H., Kuna, M., Biermann, H.: Characterization of stress-strain behavior of a cast trip steel under different biaxial planar load ratios. Eng. Fract. Mech. 78, 1684–1695 (2011)

    Article  Google Scholar 

  22. Kuwabara, T.: Advances in experiments on metal sheet and tubes in support of constitutive modeling and forming simulations. Int. J. Plast. 23, 385–419 (2007)

    Article  MATH  Google Scholar 

  23. Makinde, A., Thibodeau, L., Neale, K.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. 32, 138–144 (1992)

    Article  Google Scholar 

  24. Mohr, D., Henn, S.: Calibration of stress-triaxiality dependent crack formation criteria: A new hybrid experimental-numerical method. Exp. Mech. 47, 805–820 (2007)

    Article  Google Scholar 

  25. Müller, W., Pöhland, K.: New experiments for determining yield loci of sheet metal. Mater. Process. Technol. 60, 643–648 (1996)

    Article  Google Scholar 

  26. Roth, C.C., Mohr, D.: Ductile fracture experiments with locally proportional loading histories. Int. J. Plast. 79, 328–354 (2016)

    Article  Google Scholar 

  27. Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids. 16, 373–394 (1968)

    Article  Google Scholar 

  28. Singh, K.N., Clos, R., Schreppel, U., Veit, P., Hamann, A., Klingbeil, D., Sievert, R., KÃijnecke, G.: Versagenssimulation dynamisch belasteter Proben mit unterschiedlichen MehrachsigkeitszustÃd’nden unter Verwendung des Johnson-Cook-Versagensmodells fÃijr eine Nickelbasislegierung. Tec. Mech. 23, 205–215 (2003)

    Google Scholar 

  29. Xue, Z., Pontin, M., Zok, F., Hutchinson, J.: Calibration procedures for a computational model of ductile fracture. Eng. Fract. Mech. 77, 492–509 (2010)

    Article  Google Scholar 

  30. Zheng, M., Hu, C., Luo, Z., Zheng, X.: Further study of the new damage model by negative stress triaxiality. Int. J. Fract. 63, R15–R19 (1993)

    Article  Google Scholar 

  31. Zillmann, B., Wagner, M.F.X., Schmaltz, S., Schmidl, E., Lampke, T., Willner, K., Halle, T.: In-plane biaxial compression and tension testing of thin sheet materials. Int. J. Solids. Struct. 66, 111–120 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Deutsche Forschungsgemeinschaft (German Research Foundation) though contract number BR1793/19-1. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gerke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerke, S., Schmidt, M., Dirian, M., Brünig, M. (2018). Damage and Fracture of Ductile Sheet Metals: Experiments and Numerical Simulations with New Biaxial Specimens. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics