Skip to main content

Experiments on Damage and Failure Mechanisms in Ductile Metals at Different Loading Conditions

  • Chapter
  • First Online:
Advanced Methods of Continuum Mechanics for Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 60))

Abstract

This paper deals with a phenomenological damage and failure model for ductile metals. The anisotropic continuum approach takes into account the effect of stress state on damage condition and damage rule corresponding to different mechanisms acting on the micro-scale. Different branches of the criteria are formulated depending on stress intensity, stress triaxiality, and the Lode parameter. A new experimental program will be discussed in detail to validate the proposed continuum framework. Experiments with aluminum alloys are performed using a biaxial testing machine allowing individual loading of flat specimens in two directions. Loads are recorded during loading of the specimens and digital image correlation technique has been used to analyze the strain states in critical regions of the specimens. The biaxial experiments cover a wide range of stress states in shear-tension and shear-compression regimes. They will extend understanding of stress-state-dependent damage and failure mechanisms in ductile metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach, H., Kozhar, S., Naumenko, K.: Modeling creep damage of an aluminum-silicon eutectic alloy. Int. J. Damage Mech. 22, 683–698 (2013)

    Article  Google Scholar 

  • Bai, Y., Wierzbicki, T.: A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24, 1071–1096 (2008)

    Article  MATH  Google Scholar 

  • Bao, Y., Wierzbicki, T.: On the fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81–98 (2004)

    Article  Google Scholar 

  • Becker, R., Needleman, A., Richmond, O., Tvergaard, V.: Void growth and failure in notched bars. J. Mech. Phys. Solids 36, 317–351 (1988)

    Article  Google Scholar 

  • Bonora, N., Gentile, D., Pirondi, A., Newaz, G.: Ductile damage evolution under triaxial state of stress: theory and experiments. Int. J. Plast. 21, 981–1007 (2005)

    Article  MATH  Google Scholar 

  • Brünig, M.: An anisotropic ductile damage model based on irreversible thermodynamics. Int. J. Plast. 19, 1679–1713 (2003)

    Article  MATH  Google Scholar 

  • Brünig, M., Chyra, O., Albrecht, D., Driemeier, L., Alves, M.: A ductile damage criterion at various stress triaxialities. Int. J. Plast. 24, 1731–1755 (2008)

    Article  MATH  Google Scholar 

  • Brünig, M., Albrecht, D., Gerke, S.: Numerical analyses of stress-triaxiality-dependent inelastic deformation behavior of aluminum alloys. Int. J. Damage Mech. 20, 299–317 (2011)

    Article  Google Scholar 

  • Brünig, M., Gerke, S., Hagenbrock, V.: Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int. J. Plast. 50, 49–65 (2013)

    Article  Google Scholar 

  • Brünig, M., Gerke, S., Hagenbrock, V.: Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects. Int. J. Plast. 63, 49–63 (2014)

    Article  Google Scholar 

  • Brünig, M., Brenner, D., Gerke, S.: Modeling of stress-state-dependent damage and failure of ductile metals. Appl. Mech. Mater. 784, 35–42 (2015a)

    Google Scholar 

  • Brünig, M., Brenner, D., Gerke, S.: Stress state dependence of ductile damage and fracture behavior: experiments and numerical simulations. Eng. Fract. Mech. 141, 152–169 (2015b)

    Google Scholar 

  • Brünig, M., Gerke, S., Brenner, D.: Experiments and numerical simulations on stress-state-dependence of ductile damage criteria. In: Altenbach, H., Brünig, M. (eds.) Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading. Advanced Structured Materials, pp. 17–34. Springer, Berlin (2015c)

    Google Scholar 

  • Brünig, M., Gerke, S., Schmidt, M. (2016) Biaxial experiments and phenomenological modeling of stress-state-dependent ductile damage and fracture. Int. J. Fract. (submitted for publication)

    Google Scholar 

  • Chaboche, J.: Continuum damage mechanics. Part I: general concepts. J. Appl. Mech. 55, 59–64 (1988)

    Article  Google Scholar 

  • Chow, C., Wang, J.: An anisotropic theory of continuum damage mechanics for ductile fracture. Eng. Fract. Mech. 27, 547–558 (1987)

    Article  Google Scholar 

  • Demmerle, S., Boehler, J.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 41, 143–181 (1993)

    Article  Google Scholar 

  • Driemeier, L., Brünig, M., Micheli, G., Alves, M.: Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 42, 207–217 (2010)

    Article  Google Scholar 

  • Driemeier, L., Moura, R., Machado, I., Alves, M.: A bifailure specimen for accessing failure criteria performance. Int. J. Plast. 71, 62–86 (2015)

    Article  Google Scholar 

  • Dunand, M., Mohr, D.: On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode angles. J. Mech. Phys. Solids 59, 1374–1394 (2011)

    Article  MATH  Google Scholar 

  • Gao, X., Zhang, G., Roe, C.: A study on the effect of the stress state on ductile fracture. Int. J. Damage Mech. 19, 75–94 (2010)

    Article  Google Scholar 

  • Kulawinski, D., Nagel, K., Henkel, S., Hübner, P., Fischer, H., Kuna, M., Biermann, H.: Characterization of stress-strain behavior of a cast trip steel under different biaxial planar load ratios. Eng. Fract. Mech. 78, 1684–1695 (2011)

    Article  Google Scholar 

  • Kuwabara, T.: Advances in experiments on metal sheet and tubes in support of constitutive modeling and forming simulations. Int. J. Plast. 23, 385–419 (2007)

    Article  MATH  Google Scholar 

  • Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  • Mohr, D., Henn, S.: Calibration of stress-triaxiality dependent crack formation criteria: a new hybrid experimental-numerical method. Exp. Mech. 47, 805–820 (2007)

    Article  Google Scholar 

  • Müller, W., Pöhland, K.: New experiments for determining yield loci of sheet metal. Mater. Process. Technol. 60, 643–648 (1996)

    Article  Google Scholar 

  • Naumenko, K., Altenbach, H., Kutschke, A.: A combined model for hardening, softening, and damage processes in advanced heat resistence steels at elevated temperature. Int. J. Damage Mech. 20, 578–597 (2011)

    Article  Google Scholar 

  • Voyiadjis, G., Kattan, P.: Advances in Damage Mechanics: Metals and Metal Matrix Composites. Elsevier, Amsterdam (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brünig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Brünig, M., Gerke, S., Schmidt, M. (2016). Experiments on Damage and Failure Mechanisms in Ductile Metals at Different Loading Conditions. In: Naumenko, K., Aßmus, M. (eds) Advanced Methods of Continuum Mechanics for Materials and Structures. Advanced Structured Materials, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-0959-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0959-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0958-7

  • Online ISBN: 978-981-10-0959-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics