Skip to main content
Log in

Development of an apparatus for biaxial testing using cruciform specimens

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A testing apparatus has been developed to study the behavior of sheet metals and composite materials under monotonic and cyclic biaxial loading conditions. This test facility employs cruciform specimens that are loaded in their plane. Problems encountered while developing the test system are discussed.

We also discuss the difficulties common to test methods employing cruciform specimens. These relate to the design of a suitable specimen geometry and to the determination of the stresses throughout the specimen. A method for designing an optimal geometry for these specimens is presented. This method is based on the statistical tools of factorial and response surface designs. The statistical method, coupled with a finite-element analysis of the specimen, was successfully applied to optimize the geometry of a cruciform specimen with a circular reduced central region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lefebvre, D., Chebl, C., Thibodeau, L. andKhazzari, E., “A High-Strain Biaxial-Testing Rig for Thin-Walled Tubes Under Axial Load and Pressure,”Experimental Mechanics,23,384–392 (1983).

    Google Scholar 

  2. Found, M.S., Fernando, U.S. and Miller, K.J., “Requirements of a New Multiaxial Fatigue Testing Facility,” Multiaxial Fatigue, ASTM STP 853, ed. K.J. Miller and M.W. Brown, 11–23 (1985).

  3. Pascoe, K.J. andde Villiers, J.W.R., “Low-Cycle Fatigue of Steels Under Biaxial Straining,”J. Strain Anal.,2,117–126 (1967).

    Google Scholar 

  4. Parsons, M.W. andPascoe, K.J., “Development of a Biaxial Fatigue Testing Rig,”J. Strain Anal.,10,1–9 (1975).

    Google Scholar 

  5. Shiratori, E. andIkegami, K., “A New Biaxial Tensile Testing Machine With Flat Specimen,”Bul. Tokyo Inst. Tech.,82,105–118 (1967).

    Google Scholar 

  6. Shimada, H., Shimizu, K., Obata, M., Chikugo, K. andChiba, M., “A New Biaxial Testing Machine for the Flat Specimen and a Fundamental Study on the Shape of Specimen,”Tech. Rep., Tohoku Univ.,41,351–369 (1976).

    Google Scholar 

  7. Hopper, C.D. andMiller, K.J., “Fatigue Crack Propagation in Biaxial Stress Fields,”J. Strain Anal.,12,23–28 (1977).

    Google Scholar 

  8. Daniel, I.M., “Behavior of Graphite/Epoxy Plates With Holes Under Biaxial Loading,”Experimental Mechanics,20,1–8 (1980).

    Article  Google Scholar 

  9. Charvat, I.M.H. andGarrett, G.G., “The Development of a Closed-Loop, Servo-Hydraulic Test System for Direct Stress Monotonic and Cyclic Crack Propagation Studies Under Biaxial Loading,”J. Test. Eval.,8,9–17 (1980).

    Google Scholar 

  10. Liu, A.F. andYamane, J.R., “Crack Growth Under Equibiaxial Tension,”Res. Mech.,5,1–11 (1982).

    Google Scholar 

  11. Jones, D.L., Poulose, P.K. andLiebowitz, H., “The Effects of Biaxial Loading on the Fracture Characteristics of Several Engineering Materials,”Eng. Fract. Mech.,24,187–205 (1986).

    Google Scholar 

  12. Bert, C.W., Mayberry, B.L. andRay, J.D., “Behavior of Fiber-Reinforced Plastic Laminates Under Biaxial Loading,”ASTM STP 460, 362–380 (1969).

    Google Scholar 

  13. Ferron, G. andMakinde, A., “Design and Development of a Biaxial Strength Testing Device,”J. Test. Eval.,16,253–256 (1988).

    Google Scholar 

  14. Johnson, A.E. andKhan, B., “A Biaxial-Stressing Creep Machine and Extensometer,”Proc. Inst. Mech. Eng.,180A,318–323 (1965–1966).

    Google Scholar 

  15. Hayhurst, D.R., “A Biaxial-Tension Creep-Rupture Testing Machine,”J. Strain Anal.,8,119–123 (1973).

    Google Scholar 

  16. Kelly, D.A., “Problems in Creep Testing Under Biaxial Stress Systems,”J. Strain Anal.,11,1–6 (1976).

    Google Scholar 

  17. Fessler, H. andMusson, J.K., “A 30-Ton Biaxial Testing Machine,”J. Strain Anal.,4,22–26 (1969).

    Google Scholar 

  18. Chaudonneret, M., Gilles, P., Labourdette, R. andPolicella, H., “Machine d'essais de traction biaxiale pour essais statiques et dynamiques,”La Recherche Aérospatiale,5,299–305 (1977).

    Google Scholar 

  19. Makinde, A., Thibodeau, L., Lefebvre, D., Neale, K.W. and Lahoud, A.E., “Development of a Servohydraulic Machine for Testing Cruciform Specimens,” Proc. 1989 SEM Spring Corf. on Exp. Mech., 112–116 (1989).

  20. MTS Systems Corporation, Minneapolis, Minnesota, Technical service manuals.

  21. Makinde, A., Thibodeau, L., Neale, K.W. and Lefebvre, D., “Design of a Biaxial Extensometer for Measuring Strains in Cruciform Specimens,” Experimental Mechanics,22 (2), (1992).

  22. Smith, E.W. andPascoe, K.J., “The Behaviour of Fatigue Cracks Subject to Applied Biaxial Stress: A Review of Experimental Evidence,”Fatigue Eng. Mat. Struct.,6,201–224 (1983).

    Google Scholar 

  23. Monch, E. andGalster, D., “A Method for Producing a Defined Uniform Biaxial Tensile Stress Field,”Brit. J. Appl. Phys.,14,810–812 (1963).

    Google Scholar 

  24. Liu, A.F., Allison, J.E., Dittmer, D.F. and Yamane, J.R., “Effect of Biaxial Stresses on Crack Growth,” ASTM STP 677, ed. C.W. Smith, 5–22 (1979).

  25. Parsons, M.W. andPascoe, K.J., “Low-Cycle Fatigue Under Biaxial Stress,”Proc. Inst. Mech. Eng.,188,657–675 (1975).

    Google Scholar 

  26. Makinde, A., “Mise au point d'un dispositif original de traction biaxiale: Application à l'étude expérimentale de l'écrouissage des metaux sous différents chemins de déformation,”PhD Thesis, Université de Poitiers, Poitiers, France (1986).

    Google Scholar 

  27. Kreissig, R. andSchindler, J., “Some Experimental Results on Yield Condition in Plane Stress State,”Acta Mech.,65,169–179 (1986).

    Google Scholar 

  28. Bremand, F. andLagarde, A., “Optical Method of Strain Measurements: Biaxial Tension Specimen for Birefringent Elastomer,”Arch. Mech.,40,515–527 (1988).

    Google Scholar 

  29. Box, G.E.P., Hunter, W.G. andHunter, J.S., Statistics for Experimenters, John Wiley & Sons, New York (1978).

    Google Scholar 

  30. Wilson, I.H. andWhite, D.J., “Cruciform Specimens for Biaxial Fatigue Tests: An Investigation Using Finite Element Analysis and Photoelastic-Coating Techniques,”J. Strain Anal.,6,27–37 (1971).

    Google Scholar 

  31. Hill, R., “A General Theory of Uniqueness and Stability in Elastic-Plastic Solids,”J. Mech. Phys. Solids,6,236–249 (1958).

    MATH  Google Scholar 

  32. Hutchinson, J.W., “Finite Strain Analysis of Elastic-Plastic Solids and Structures,” Numerical Solution of Non-Linear Structural Problems, ed. R.F. Hartung, ASME, 17–29 (1973).

  33. Neglo, K., Chater, E. andNeale, K.W., “Effects of the Shape of a Geometric Defect and of Interactions Between Defects on Limit Strains for Biaxially Stretched Sheets,”Int. J. Mech. Sci.,29,807–820 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makinde, A., Thibodeau, L. & Neale, K.W. Development of an apparatus for biaxial testing using cruciform specimens. Experimental Mechanics 32, 138–144 (1992). https://doi.org/10.1007/BF02324725

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02324725

Keywords

Navigation