Skip to main content
Log in

Biaxial experiments and phenomenological modeling of stress-state-dependent ductile damage and fracture

  • IUTAM Paris 2015
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The paper discusses an anisotropic continuum damage and fracture model for ductile metals. The phenomenological approach takes into account the effect of stress state on damage and failure criteria. Different branches of the criteria are considered corresponding to various microscopic mechanisms depending on stress intensity, stress triaxiality and the Lode parameter. To validate the proposed framework different experiments with biaxially loaded specimens and corresponding numerical simulations have been performed. Digital image correlation technique has been used to analyze current strain states in critical regions of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24:1071–1096

    Article  Google Scholar 

  • Bao Y, Wierzbicki T (2004) On the fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98

    Article  Google Scholar 

  • Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech 72:1049–1069

    Article  Google Scholar 

  • Barsoum I, Faleskog J (2011) Micromechanical analysis on the influence of the lode parameter on void growth and coalescence. Int J Solids Struct 48:925–938

    Article  Google Scholar 

  • Becker R, Needleman A, Richmond O, Tvergaard V (1988) Void growth and failure in notched bars. J Mech Phys Solids 36:317–351

    Article  Google Scholar 

  • Bonora N, Gentile D, Pirondi A, Newaz G (2005) Ductile damage evolution under triaxial state of stress: theory and experiments. Int J Plast 21:981–1007

    Article  Google Scholar 

  • Brocks W, Sun DZ, Hönig A (1995) Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic material. Int J Plast 11:971–989

    Article  Google Scholar 

  • Brünig M (2003) An anisotropic ductile damage model based on irreversible thermodynamics. Int J Plast 19:1679–1713

    Article  Google Scholar 

  • Brünig M, Albrecht D, Gerke S (2011) Modeling of ductile damage and fracture behavior based on different micro-mechanisms. Int J Damage Mech 20:558–577

    Article  Google Scholar 

  • Brünig M, Albrecht D, Gerke S (2011) Numerical analyses of stress-triaxiality-dependent inelastic deformation behavior of aluminum alloys. Int J Damage Mech 20:299–317

    Article  Google Scholar 

  • Brünig M, Brenner D, Gerke S (2015) Modeling of stress-state-dependent damage and failure of ductile metals. Appl Mech Mater 784:35–42

    Article  Google Scholar 

  • Brünig M, Brenner D, Gerke S (2015) Stress state dependence of ductile damage and fracture behavior: experiments and numerical simulations. Eng Fract Mech 141:152–169

    Article  Google Scholar 

  • Brünig M, Chyra O, Albrecht D, Driemeier L, Alves M (2008) A ductile damage criterion at various stress triaxialities. Int J Plast 24:1731–1755

    Article  Google Scholar 

  • Brünig M, Gerke S, Brenner D (2015) Experiments and numerical simulations on stress-state-dependence of ductile damage criteria. In: Altenbach H, Brünig M (eds) Inelastic behavior of materials and structures under monotonic and cyclic loading, advanced structured materials. Springer, Berlin Heidelberg, pp 17–34

    Google Scholar 

  • Brünig M, Gerke S, Hagenbrock V (2013) Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. Int J Plast 50:49–65

    Article  Google Scholar 

  • Brünig M, Gerke S, Hagenbrock V (2014) Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects. Int J Plast 63:49–63

    Article  Google Scholar 

  • Chaboche J (1988) Continuum damage mechanics. Part I: general concepts. J Appl Mech 55:59–64

    Article  Google Scholar 

  • Chaboche J (1988) Continuum damage mechanics. Part II: damage growth, crack initiation, and crack growth. J Appl Mech 55:65–72

    Article  Google Scholar 

  • Chew H, Guo T, Cheng L (2006) Effects of pressure-sensitivity and plastic dilatancy on void growth and interaction. Int J Solids Struct 43:6380–6397

    Article  Google Scholar 

  • Demmerle S, Boehler J (1993) Optimal design of biaxial tensile cruciform specimens. J Mech Phys Solids 41:143–181

    Article  Google Scholar 

  • Driemeier L, Brünig M, Micheli G, Alves M (2010) Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech Mater 42:207–217

    Article  Google Scholar 

  • Driemeier L, Moura R, Machado I, Alves M (2015) A bifailure specimen for accessing failure criteria performance. Int J Plast 71:62–86

    Article  Google Scholar 

  • Dunand M, Mohr D (2011) On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles. J Mech Phys Solids 59:1374–1394

    Article  Google Scholar 

  • Gao X, Kim J (2006) Modeling of ductile fracture: significance of void coalescence. Int J Solids Struct 43:6277–6293

    Article  Google Scholar 

  • Gao X, Zhang G, Roe C (2010) A study on the effect of the stress state on ductile fracture. Int J Damage Mech 19:75–94

    Article  Google Scholar 

  • Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48

    Article  Google Scholar 

  • Khan A, Liu H (2012) A new appproach for ductile fracture prediction on Al 2024–T351 alloy. Int J Plast 35:1–12

    Article  Google Scholar 

  • Kim J, Gao X, Srivatsan T (2003) Modeling of crack growth in ductile solids: a three-dimensional analysis. Int J Solids Struct 40:7357–7374

    Article  Google Scholar 

  • Kulawinski D, Nagel K, Henkel S, Hübner P, Fischer H, Kuna M, Biermann H (2011) Characterization of stress-strain behavior of a cast trip steel under different biaxial planar load ratios. Eng Fract Mech 78:1684–1695

    Article  Google Scholar 

  • Kuna M, Sun D (1996) Three-dimensional cell model analyses of void growth in ductile materials. Int J Fract 81:235–258

    Article  Google Scholar 

  • Kuwabara T (2007) Advances in experiments on metal sheet and tubes in support of constitutive modeling and forming simulations. Int J Plast 23:385–419

    Article  Google Scholar 

  • Kweon S (2012) Damage at negative triaxiality. Eur J Mech A Solids 31:203–212

    Article  Google Scholar 

  • Lemaitre J (1996) A course on damage mechanics. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Lou Y, Huh H (2013) Extension of a shear controlled ductile fracture model considering the stress triaxiality and Lode parameter. Int J Solids Struct 50:447–455

    Article  Google Scholar 

  • Lou Y, Yoon J, Huh H (2014) Modeling of shear ductile fracture considering a changeable cut-off value. Int J Plast 54:56–80

    Article  Google Scholar 

  • Mohr D, Henn S (2007) Calibration of stress-triaxiality dependent crack formation criteria: a new hybrid experimental-numerical method. Exp Mech 47:805–820

    Article  Google Scholar 

  • Müller W, Pöhland K (1996) New experiments for determining yield loci of sheet metal. Mater Process Technol 60:643–648

    Article  Google Scholar 

  • Needleman A, Kushner A (1990) An analysis of void distribution effects on plastic flow in porous solids. Eur J Mech A Solids 9:193–206

  • Nielsen K, Dahl J, Tvergaard V (2012) Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3d. Int J Fract 177:97–108

    Article  Google Scholar 

  • Scheyvaerts F, Onck P, Tekoǧlu C, Pardoen T (2011) The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. J Mech Phys Solids 59:373–397

    Article  Google Scholar 

  • Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151

    Article  Google Scholar 

  • Voyiadjis G, Kattan P (1999) Advances in damage mechanics: metals and metal matrix composites. Elsevier, Amsterdam

    Google Scholar 

  • Zhang K, Bai J, Francois D (2001) Numerical analysis of the influence of the Lode parameter on void growth. Int J Solids Struct 38:5847–5856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brünig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brünig, M., Gerke, S. & Schmidt, M. Biaxial experiments and phenomenological modeling of stress-state-dependent ductile damage and fracture. Int J Fract 200, 63–76 (2016). https://doi.org/10.1007/s10704-016-0080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0080-3

Keywords

Navigation