Skip to main content

Basic Aspects of Osteoclast Differentiation and Function

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Osteoclasts are multinucleated cells of the myeloid lineage that are highly specialized for bone resorption through acidification and exocytosis of bone-degrading enzymes into the space between the osteoclast and underlying bone, termed the resorption lacuna. Physiologic osteoclast activity is essential for normal skeletal development and remodeling to repair skeletal microdamage. Osteopetrosis, a collection of monogenic diseases caused by nonfunctional or absent osteoclasts, underscores the importance of adequate osteoclast function for skeletal health. Excessive osteoclastic bone resorption also results in bone disease, including osteoporosis. In this chapter, we provide information on the cellular origin of osteoclasts, discuss the receptors and signaling pathways that drive osteoclast differentiation, and detail the transcriptional machinery required to express the osteoclast program. We detail the cytoskeletal reorganization and formation of a specialized resorption apparatus required for mineral and matrix resorption. Lastly, we discuss the consequences of perturbation of osteoclast formation or function, both in the context of genetic diseases that map to the osteoclast and in the context of pathologic conditions. The goal of this chapter is to provide a detailed overview of osteoclast formation and function that can serve as a reference for clinician’s interested in the role of the osteoclast in osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amarasekara DS, et al. Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 2018;18:e8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285:25103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem. 1986;261:12665–74.

    CAS  PubMed  Google Scholar 

  4. Robin C. Sur l’existence de deux especes nouvelles d’elements anatomiques qui se trouvent dans le canal medullaire des os. C R Seanc Soc Biol. 1849;1:149–50.

    Google Scholar 

  5. Kölliker A. Die normale Resorption des Knochengewebes und ihre Bedeutung für die Entstehung der typischen Knochenformen. Leipzig; Vogel. 1873.

    Google Scholar 

  6. Arnold JS, Jee WS. Bone growth and osteoclastic activity as indicated by radioautographic distribution of plutonium. Am J Anat. 1957;101:367–417.

    Article  CAS  PubMed  Google Scholar 

  7. Luben RA, Wong GL, Cohn DV. Parathormone-stimulated resorption of devitalised bone by cultured osteoclast-type bone cells. Nature. 1977;265:629–30.

    Article  CAS  PubMed  Google Scholar 

  8. Scott BL, Pease DC. Electron microscopy of the epiphyseal apparatus. Anat Rec. 1956;126:465–95.

    Article  CAS  PubMed  Google Scholar 

  9. Mallory FB. Giant Cell Sarcoma. J Med Res. 1911;24:463–468.3.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Walker DG. Congenital osteopetrosis in mice cured by parabiotic union with normal siblings. Endocrinology. 1972;91:916–20.

    Article  CAS  PubMed  Google Scholar 

  11. Walker DG. Osteopetrosis cured by temporary parabiosis. Science. 1973;180:875.

    Article  CAS  PubMed  Google Scholar 

  12. Walker DG. Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med. 1975;142:651–63.

    Article  CAS  PubMed  Google Scholar 

  13. Walker DG. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science. 1975;190:784–5.

    Article  CAS  PubMed  Google Scholar 

  14. Tinkler SM, Linder JE, Williams DM, Johnson NW. Formation of osteoclasts from blood monocytes during 1 alpha-OH Vit D-stimulated bone resorption in mice. J Anat. 1981;133:389–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arai F, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999;190:1741–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Charles JF, et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest. 2012;122:4592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jacome-Galarza CE, Lee S-K, Lorenzo JA, Aguila HL. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28:1203–13.

    Article  CAS  Google Scholar 

  18. Jacquin C, Gran DE, Lee SK, Lorenzo JA, Aguila HL. Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21:67–77.

    Article  Google Scholar 

  19. Muto A, et al. Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:2978–90.

    Article  CAS  Google Scholar 

  20. Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N. Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther. 2006;8:R152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lari R, Kitchener PD, Hamilton JA. The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Res Ther. 2009;11:R23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Takayanagi H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889–901.

    Article  CAS  PubMed  Google Scholar 

  23. American Society for Bone and Mineral Research President’s Committee on Nomenclature. Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. The American Society for Bone and Mineral Research President’s committee on nomenclature. J Bone Miner Res Off J Am Soc Bone Miner Res. 2000;15:2293–6.

    Google Scholar 

  24. Anderson DM, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9.

    Article  CAS  PubMed  Google Scholar 

  25. Burgess TL, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999;145:527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95:3597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong BR, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. 1997;272:25190–4.

    Article  CAS  PubMed  Google Scholar 

  28. Nakagawa N, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253:395–400.

    Article  CAS  PubMed  Google Scholar 

  29. Kong YY, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23.

    Article  CAS  PubMed  Google Scholar 

  30. Li J, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A. 2000;97:1566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu H, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999;96:3540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    Article  CAS  PubMed  Google Scholar 

  33. Tsuda E, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun. 1997;234:137–42.

    Article  CAS  PubMed  Google Scholar 

  34. Kwon BS, et al. TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J Off Publ Fed Am Soc Exp Biol. 1998;12:845–54.

    CAS  Google Scholar 

  35. Yun TJ, et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol Baltim Md. 1998;1950(161):6113–21.

    Google Scholar 

  36. Bucay N, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12:1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McClung MR. Inhibition of RANKL as a treatment for osteoporosis: preclinical and early clinical studies. Curr Osteoporos Rep. 2006;4:28–33.

    Article  PubMed  Google Scholar 

  39. Prolia (denosumab) [package insert]. 2018.

    Google Scholar 

  40. Xgeva (denosumab) [package insert]. 2013.

    Google Scholar 

  41. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94:25–34.

    Article  CAS  PubMed  Google Scholar 

  42. Xiong J, et al. Osteocytes, not osteoblasts or lining cells, are the Main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One. 2015;10:e0138189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nakashima T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4.

    Article  CAS  PubMed  Google Scholar 

  44. Xiong J, et al. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cabahug-Zuckerman P, et al. Osteocyte apoptosis caused by Hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J Bone Miner Res Off J Am Soc Bone Miner Res. 2016;31:1356–65.

    Article  CAS  Google Scholar 

  46. Sapir-Koren R, Livshits G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2014;25:2685–700.

    Article  CAS  Google Scholar 

  47. Xiong J, et al. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone. 2014;66:146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujiwara Y, et al. RANKL (receptor activator of NFκB ligand) produced by osteocytes is required for the increase in B cells and bone loss caused by estrogen deficiency in mice. J Biol Chem. 2016;291:24838–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiong J, et al. Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss. Nat Commun. 2018;9:2909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Koga T, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 2004;428:758–63.

    Article  CAS  PubMed  Google Scholar 

  51. Mócsai A, et al. The immunomodulatory adapter proteins DAP12 and fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci U S A. 2004;101:6158–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Humphrey MB, Lanier LL, Nakamura MC. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev. 2005;208:50–65.

    Article  CAS  PubMed  Google Scholar 

  53. Humphrey MB, Nakamura MC. A comprehensive review of Immunoreceptor regulation of osteoclasts. Clin Rev Allergy Immunol. 2016;51:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim K, et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood. 2007;109:3253–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kodama H, et al. Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med. 1991;173:269–72.

    Article  CAS  PubMed  Google Scholar 

  56. Cecchini MG, Hofstetter W, Halasy J, Wetterwald A, Felix R. Role of CSF-1 in bone and bone marrow development. Mol Reprod Dev. 1997;46:75–83.; discussion 83-84.

    Article  CAS  PubMed  Google Scholar 

  57. Zou W, et al. Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol. 2007;176:877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duong LT, Lakkakorpi P, Nakamura I, Rodan GA. Integrins and signaling in osteoclast function. Matrix Biol J Int Soc Matrix Biol. 2000;19:97–105.

    Article  CAS  Google Scholar 

  59. Nakamura I, Duong LT, Rodan SB, Rodan GA. Involvement of alpha(v)beta3 integrins in osteoclast function. J Bone Miner Metab. 2007;25:337–44.

    Article  CAS  PubMed  Google Scholar 

  60. McHugh KP, et al. Role of cell-matrix interactions in osteoclast differentiation. Adv Exp Med Biol. 2007;602:107–11.

    Article  CAS  PubMed  Google Scholar 

  61. McHugh KP, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000;105:433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elsegood CL, et al. M-CSF induces the stable interaction of cFms with alphaVbeta3 integrin in osteoclasts. Int J Biochem Cell Biol. 2006;38:1518–29.

    Article  CAS  PubMed  Google Scholar 

  63. Zou W, Teitelbaum SL. Absence of Dap12 and the αvβ3 integrin causes severe osteopetrosis. J Cell Biol. 2015;208:125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zallone AZ, Teti A, Primavera MV. Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci. 1984;66:335–42.

    Google Scholar 

  65. Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. Foreign body giant cells and osteoclasts are TRAP positive, have podosome-belts and both require OC-STAMP for cell fusion. J Cell Biochem. 2013;114:1772–8.

    Article  CAS  PubMed  Google Scholar 

  66. Kukita T, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200:941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miyamoto H, et al. Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27:1289–97.

    Article  CAS  Google Scholar 

  68. Yagi M, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202:345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang M, et al. Osteoclast stimulatory transmembrane protein (OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation. J Cell Physiol. 2008;215:497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Witwicka H, et al. Studies of OC-STAMP in osteoclast fusion: a new knockout mouse model, Rescue of Cell Fusion, and transmembrane topology. PLoS One. 2015;10(6):e0128275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lee S-H, et al. V-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med. 2006;12:1403–9.

    Article  CAS  PubMed  Google Scholar 

  72. Xing L, Xiu Y, Boyce BF. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J Orthop. 2012;3:212–22.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40:251–64.

    Article  CAS  PubMed  Google Scholar 

  74. Ikeda K, Takeshita S. The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem (Tokyo). 2016;159(1):1–8.

    Article  CAS  Google Scholar 

  75. Lomaga MA, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Israël A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Soysa NS, et al. The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25:809–18.

    CAS  Google Scholar 

  78. Xing L, et al. NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17:1200–10.

    Article  CAS  Google Scholar 

  79. Iotsova V, et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med. 1997;3:1285–9.

    Article  CAS  PubMed  Google Scholar 

  80. Swarnkar G, Karuppaiah K, Mbalaviele G, Chen TH-P, Abu-Amer Y. Osteopetrosis in TAK1-deficient mice owing to defective NF-κB and NOTCH signaling. Proc Natl Acad Sci U S A. 2015;112:154–9.

    Article  CAS  PubMed  Google Scholar 

  81. Grigoriadis AE, et al. C-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 1994;266:443–8.

    Article  CAS  PubMed  Google Scholar 

  82. Thouverey C, Caverzasio J. Focus on the p38 MAPK signaling pathway in bone development and maintenance. BoneKEy Rep. 2015;4:711.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cong Q, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep. 2017;7:45964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He Y, et al. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One. 2011;6:e24780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shinohara M, et al. Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B-mediated vesicle transport. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27:2464–75.

    Article  CAS  Google Scholar 

  86. Gingery A, Bradley E, Shaw A, Oursler MJ. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem. 2003;89:165–79.

    Article  CAS  PubMed  Google Scholar 

  87. Takeshita S, et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med. 2002;8:943–9.

    Article  CAS  PubMed  Google Scholar 

  88. Jang HD, Noh JY, Shin JH, Lin JJ, Lee SY. PTEN regulation by the Akt/GSK-3β axis during RANKL signaling. Bone. 2013;55:126–31.

    Article  CAS  PubMed  Google Scholar 

  89. Kwon OH, Lee C-K, Lee YI, Paik S-G, Lee H-J. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors. Biochem Biophys Res Commun. 2005;335:437–46.

    Article  CAS  PubMed  Google Scholar 

  90. Tondravi MM, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature. 1997;386:81–4.

    Article  CAS  PubMed  Google Scholar 

  91. Lu S-Y, Li M, Lin Y-L. Mitf induction by RANKL is critical for osteoclastogenesis. Mol Biol Cell. 2010;21:1763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharma SM, et al. MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem. 2007;282:15921–9.

    Article  CAS  PubMed  Google Scholar 

  93. Thesingh CW, Scherft JP. Fusion disability of embryonic osteoclast precursor cells and macrophages in the microphthalmic osteopetrotic mouse. Bone. 1985;6:43–52.

    Article  CAS  PubMed  Google Scholar 

  94. Weilbaecher KN, et al. Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol Cell. 2001;8:749–58.

    Article  CAS  PubMed  Google Scholar 

  95. Shinohara M, et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell. 2008;132:794–806.

    Article  CAS  PubMed  Google Scholar 

  96. Epple H, et al. Phospholipase Cgamma2 modulates integrin signaling in the osteoclast by affecting the localization and activation of Src kinase. Mol Cell Biol. 2008;28:3610–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Asagiri M, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005;202:1261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bae S, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα. J Clin Invest. 2017;127:2555–68.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Indo Y, et al. Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28:2392–9.

    Article  CAS  Google Scholar 

  100. Zhao B, Ivashkiv LB. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther. 2011;13:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nishikawa K, et al. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc Natl Acad Sci U S A. 2010;107:3117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee J, et al. Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation. Blood. 2006;107:2686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hu R, et al. Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol Cell Biol. 2007;27:4018–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tamura T, Kurotaki D, Koizumi S. Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol. 2015;101:342–51.

    Article  CAS  PubMed  Google Scholar 

  105. Zhao B, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med. 2009;15:1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miyauchi Y, et al. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J Exp Med. 2010;207:751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Takayanagi H, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature. 2002;416:744–9.

    Article  CAS  PubMed  Google Scholar 

  108. Jin W, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest. 2008;118:1858–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Swarnkar G, et al. NUMBL interacts with TAK1, TRAF6 and NEMO to negatively regulate NF-κB signaling during Osteoclastogenesis. Sci Rep. 2017;7:12600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Li S, et al. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest. 2014;124:5057–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters’. Trends Mol Med. 2014;20:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cappariello A, Maurizi A, Veeriah V, Teti A. The great beauty of the osteoclast. Arch Biochem Biophys. 2014;558:70–8.

    Article  CAS  PubMed  Google Scholar 

  114. Novack DV, Faccio R. Osteoclast motility: putting the brakes on bone resorption. Ageing Res Rev. 2011;10:54–61.

    Article  CAS  PubMed  Google Scholar 

  115. Georgess D, Machuca-Gayet I, Blangy A, Jurdic P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adhes Migr. 2014;8:191–204.

    Article  Google Scholar 

  116. Zallone AZ, Teti A, Primavera MV, Naldini L, Marchisio PC. Osteoclasts and monocytes have similar cytoskeletal structures and adhesion property in vitro. J Anat. 1983;137(Pt 1):57–70.

    PubMed  PubMed Central  Google Scholar 

  117. Hunter SJ, Schraer H, Gay CV. Characterization of the cytoskeleton of isolated chick osteoclasts: effect of calcitonin. J Histochem Cytochem Off J Histochem Soc. 1989;37:1529–37.

    Article  CAS  Google Scholar 

  118. Mulari MTK, Zhao H, Lakkakorpi PT, Väänänen HK. Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic Cph Den. 2003;4:113–25.

    Article  CAS  Google Scholar 

  119. Mulari M, Vääräniemi J, Väänänen HK. Intracellular membrane trafficking in bone resorbing osteoclasts. Microsc Res Tech. 2003;61:496–503.

    Article  CAS  PubMed  Google Scholar 

  120. Walker EC, et al. Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res Off J Am Soc Bone Miner Res. 2008;23:2025–32.

    Article  CAS  Google Scholar 

  121. Krishnamurthy A, et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis. 2016;75:721–9.

    Article  CAS  PubMed  Google Scholar 

  122. Aliprantis AO, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest. 2008;118:3775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xie H, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014;20:1270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jin Y-R, et al. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone. 2017;97:153–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim B-J, et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J Clin Invest. 2018;128:1429–41.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Xu R, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med. 2018;24:823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Negishi-Koga T, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80.

    Article  CAS  PubMed  Google Scholar 

  128. Zhao C, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–21.

    Article  CAS  PubMed  Google Scholar 

  129. Ikebuchi Y, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561:195–200.

    Article  CAS  PubMed  Google Scholar 

  130. Guerrini MM, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83:64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hughes AE, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–8.

    Article  CAS  PubMed  Google Scholar 

  132. Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet. 2002;70:1582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Watts GDJ, et al. Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Clin Genet. 2007;72:420–6.

    Article  CAS  PubMed  Google Scholar 

  134. Sundaram K, Shanmugarajan S, Rao DS, Reddy SV. Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology. 2011;152:4180–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9:522–36.

    Article  CAS  PubMed  Google Scholar 

  136. Boudin E, Fijalkowski I, Hendrickx G, Van Hul W. Genetic control of bone mass. Mol Cell Endocrinol. 2016;432:3–13.

    Article  CAS  PubMed  Google Scholar 

  137. Kornak U, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104:205–15.

    Article  CAS  PubMed  Google Scholar 

  138. Campos-Xavier AB, Saraiva JM, Ribeiro LM, Munnich A, Cormier-Daire V. Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet. 2003;112:186–9.

    Article  PubMed  Google Scholar 

  139. Döffinger R, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27:277–85.

    Article  PubMed  Google Scholar 

  140. Sobacchi C, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39:960–2.

    Article  CAS  PubMed  Google Scholar 

  141. Whyte MP, et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med. 2002;347:175–84.

    Article  CAS  PubMed  Google Scholar 

  142. Sly WS, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313:139–45.

    Article  CAS  PubMed  Google Scholar 

  143. Malinin NL, et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med. 2009;15:313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273:1236–8.

    Article  CAS  PubMed  Google Scholar 

  145. Kornak U, Mundlos S. Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet. 2003;73:447–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Van Wesenbeeck L, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117:919–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Aker M, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49:221–6.

    Article  CAS  PubMed  Google Scholar 

  148. Li P, et al. Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum. 2004;50:265–76.

    Article  CAS  PubMed  Google Scholar 

  149. Yao Z, et al. Tumor necrosis factor-α increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem. 2006;281:11846–55.

    Article  CAS  PubMed  Google Scholar 

  150. Chitu V, et al. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. Blood. 2012;120:3126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chiu YG, et al. CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Ther. 2010;12:R14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Durand M, et al. The increased in vitro osteoclastogenesis in patients with rheumatoid arthritis is due to increased percentage of precursors and decreased apoptosis - the in vitro osteoclast differentiation in arthritis (IODA) study. Bone. 2011;48:588–96.

    Article  CAS  PubMed  Google Scholar 

  153. Kawanaka N, et al. CD14+,CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum. 2002;46:2578–86.

    Article  CAS  PubMed  Google Scholar 

  154. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest. 2003;111:821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y. Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem. 2001;276:563–8.

    Article  CAS  PubMed  Google Scholar 

  156. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 2000;275:4858–64.

    Article  CAS  PubMed  Google Scholar 

  157. Okamoto K, Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med. 2018; https://doi.org/10.1101/cshperspect.a031245.

    Article  CAS  Google Scholar 

  158. Kimble RB, Bain S, Pacifici R. The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12:935–41.

    Article  CAS  Google Scholar 

  159. Roggia C, et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A. 2001;98:13960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim JH, et al. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol. Baltim. Md. 2009;1950(183):1862–70.

    Google Scholar 

  161. Blanchard F, Duplomb L, Baud’huin M, Brounais B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev. 2009;20:19–28.

    Article  CAS  PubMed  Google Scholar 

  162. Poli V, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994;13:1189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhu S, et al. Ovariectomy-induced bone loss in TNFα and IL6 gene knockout mice is regulated by different mechanisms. J Mol Endocrinol. 2018;60:185–98.

    Article  CAS  PubMed  Google Scholar 

  164. Hiasa M, et al. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE). Blood. 2009;114:4517–26.

    Article  CAS  PubMed  Google Scholar 

  165. Evans KE, Fox SW. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell Biol. 2007;8:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Park-Min K-H, et al. IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J. Immunol. Baltim. Md. 2009;1950(183):2444–55.

    Google Scholar 

  167. Yamada A, et al. Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology. 2007;120:573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther. 2005;7:29–37.

    Article  CAS  PubMed  Google Scholar 

  169. Takayanagi H, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408:600–5.

    Article  CAS  PubMed  Google Scholar 

  170. Zaiss MM, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 2007;56:4104–12.

    Article  CAS  PubMed  Google Scholar 

  171. Axmann R, et al. CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis. 2008;67:1603–9.

    Article  CAS  PubMed  Google Scholar 

  172. Bozec A, et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci Transl Med. 2014;6:235ra60.

    Article  PubMed  CAS  Google Scholar 

  173. Lee SK, Lorenzo JA. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology. 1999;140:3552–61.

    Article  CAS  PubMed  Google Scholar 

  174. Huang JC, et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19:235–44.

    Article  CAS  Google Scholar 

  175. Kumamoto H, Ooya K. Expression of parathyroid hormone-related protein (PTHrP), osteoclast differentiation factor (ODF)/receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoclastogenesis inhibitory factor (OCIF)/osteoprotegerin (OPG) in ameloblastomas. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2004;33:46–52.

    CAS  Google Scholar 

  176. Thomas RJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology. 1999;140:4451–8.

    Article  CAS  PubMed  Google Scholar 

  177. Hofbauer LC, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun. 1998;250:776–81.

    Article  CAS  PubMed  Google Scholar 

  178. Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J. Immunol. Baltim. Md. 2002;1950(169):3353–62.

    Google Scholar 

  179. Glass DA, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.

    Article  CAS  PubMed  Google Scholar 

  180. Saika M, Inoue D, Kido S, Matsumoto T. 17beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology. 2001;142:2205–12.

    Article  CAS  PubMed  Google Scholar 

  181. Brändström H, Björkman T, Ljunggren O. Regulation of osteoprotegerin secretion from primary cultures of human bone marrow stromal cells. Biochem Biophys Res Commun. 2001;280:831–5.

    Article  PubMed  CAS  Google Scholar 

  182. Suda K, et al. Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J. Immunol. Baltim. Md. 2004;1950(172):2504–10.

    Google Scholar 

  183. Tan YY, Yang Y-Q, Chai L, Wong RWK, Rabie ABM. Effects of vascular endothelial growth factor (VEGF) on MC3T3-E1. Orthod Craniofac Res. 2010;13:223–8.

    Article  CAS  PubMed  Google Scholar 

  184. Rubin J, et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab. 2002;87:4273–9.

    Article  CAS  PubMed  Google Scholar 

  185. O’Sullivan S, et al. Tyrosine kinase inhibitors regulate OPG through inhibition of PDGFRβ. PLoS One. 2016;11:e0164727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Nakashima T, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275:768–75.

    Article  CAS  PubMed  Google Scholar 

  187. Ahlen J, et al. Characterization of the bone-resorptive effect of interleukin-11 in cultured mouse calvarial bones. Bone. 2002;31:242–51.

    Article  CAS  PubMed  Google Scholar 

  188. Dai S-M, Nishioka K, Yudoh K. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Ann Rheum Dis. 2004;63:1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Thirunavukkarasu K, et al. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects. J Biol Chem. 2001;276:36241–50.

    Article  CAS  PubMed  Google Scholar 

  190. Quinn JM, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res Off J Am Soc Bone Miner Res. 2001;16:1787–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia F. Charles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alesi, N., Charles, J.F., Nakamura, M.C. (2020). Basic Aspects of Osteoclast Differentiation and Function. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics