Skip to main content
Log in

A Comprehensive Review of Immunoreceptor Regulation of Osteoclasts

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Osteoclasts require coordinated co-stimulation by several signaling pathways to initiate and regulate their cellular differentiation. Receptor activator for NF-κB ligand (RANKL or TNFSF11), a tumor necrosis factor (TNF) superfamily member, is the master cytokine required for osteoclastogenesis with essential co-stimulatory signals mediated by immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptors, DNAX-associated protein 12 kDa size (DAP12) and FcεRI gamma chain (FcRγ). The ITAM-signaling adaptors do not have an extracellular ligand-binding domain and, therefore, must pair with ligand-binding immunoreceptors to interact with their extracellular environment. DAP12 pairs with a number of different immunoreceptors including triggering receptor expressed on myeloid cells 2 (TREM2), myeloid DAP12-associated lectin (MDL-1), and sialic acid-binding immunoglobulin-type lectin 15 (Siglec-15); while FcRγ pairs with a different set of receptors including osteoclast-specific activating receptor (OSCAR), paired immunoglobulin receptor A (PIR-A), and Fc receptors. The ligands for many of these receptors in the bone microenvironment remain unknown. Here, we will review immunoreceptors known to pair with either DAP12 or FcRγ that have been shown to regulate osteoclastogenesis. Co-stimulation and the effects of ITAM-signaling have turned out to be complex, and now include paradoxical findings that ITAM-signaling adaptor-associated receptors can inhibit osteoclastogenesis and immunoreceptor tyrosine-based inhibitory motif (ITIM) receptors can promote osteoclastogenesis. Thus, co-stimulation of osteoclastogenesis continues to reveal additional complexities that are important in the regulatory mechanisms that seek to maintain bone homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mellis DJ, Itzstein C, Helfrich MH, Crockett JC (2011) The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 211:131–143

    Article  CAS  PubMed  Google Scholar 

  2. Long CL, Humphrey MB (2012) Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling. Bonekey Rep 1

  3. Wythe SE, Nicolaidou V, Horwood NJ (2014) Cells of the immune system orchestrate changes in bone cell function. Calcif Tissue Int 94:98–111

    Article  CAS  PubMed  Google Scholar 

  4. Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  CAS  PubMed  Google Scholar 

  6. Mocsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, Spusta SC, Majumdar S, Lanier LL, Lowell CA, Nakamura MC (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci U S A 101:6158–6163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Negishi-Koga T, Takayanagi H (2009) Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 231:241–256

    Article  CAS  PubMed  Google Scholar 

  8. Humphrey MB, Lanier LL, Nakamura MC (2005) Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev 208:50–65

    Article  CAS  PubMed  Google Scholar 

  9. Wu Y, Torchia J, Yao W, Lane NE, Lanier LL, Nakamura MC, Humphrey MB (2007) Bone microenvironment specific roles of ITAM adapter signaling during bone remodeling induced by acute estrogen-deficiency. PLoS One 2, e586

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA (2009) The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev 232:42–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lanier LL, Bakker AB (2000) The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol Today 21:611–614

    Article  CAS  PubMed  Google Scholar 

  12. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN (2012) Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation. Biochem Biophys Res Commun 427:404–409

    Article  CAS  PubMed  Google Scholar 

  13. Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, Hakola P, Bakker AB, Phillips JH, Pekkarinen P, Lanier LL, Timonen T, Peltonen L (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25:357–361

    Article  CAS  PubMed  Google Scholar 

  14. Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, Haltia M, Konttinen YT, Peltonen L (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198:669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M (2003) Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med 198:645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Humphrey MB, Ogasawara K, Yao W, Spusta SC, Daws MR, Lane NE, Lanier LL, Nakamura MC (2004) The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J Bone Miner Res 19:224–234

    Article  CAS  PubMed  Google Scholar 

  17. Zou W, Reeve JL, Liu Y, Teitelbaum SL, Ross FP (2008) DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell 31:422–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou W, Zhu T, Craft CS, Broekelmann TJ, Mecham RP, Teitelbaum SL (2010) Cytoskeletal dysfunction dominates in DAP12-deficient osteoclasts. J Cell Sci 123:2955–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, Sugahara A, Koito H, Ujike-Asai A, Nakamura A, Kanazawa K, Tan-Takeuchi K, Iwasaki K, Yokoyama WM, Kudo A, Fujiwara M, Asou H, Takai T (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nataf S, Anginot A, Vuaillat C, Malaval L, Fodil N, Chereul E, Langlois JB, Dumontel C, Cavillon G, Confavreux C, Mazzorana M, Vico L, Belin MF, Vivier E, Tomasello E, Jurdic P (2005) Brain and bone damage in KARAP/DAP12 loss-of-function mice correlate with alterations in microglia and osteoclast lineages. Am J Pathol 166:275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamimura M, Mori Y, Sugahara-Tobinai A, Takai T, Itoi E (2015) Impaired fracture healing caused by deficiency of the immunoreceptor adaptor protein DAP12. PLoS One 10, e0128210

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bouchon A, Hernandez-Munain C, Cella M, Colonna M (2001) A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med 194:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177:2051–2055

    Article  CAS  PubMed  Google Scholar 

  24. Ito H, Hamerman JA (2012) TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur J Immunol 42:176–185

    Article  CAS  PubMed  Google Scholar 

  25. Humphrey MB, Daws MR, Spusta SC, Niemi EC, Torchia JA, Lanier LL, Seaman WE, Nakamura MC (2006) TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res 21:237–245

    Article  CAS  PubMed  Google Scholar 

  26. Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB (2010) TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal 3:ra38

    Article  PubMed  PubMed Central  Google Scholar 

  27. Colonna M, Turnbull I, Klesney-Tait J (2007) The enigmatic function of TREM-2 in osteoclastogenesis. Adv Exp Med Biol 602:97–105

    Article  PubMed  Google Scholar 

  28. Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE (2003) Pattern recognition by TREM-2: binding of anionic ligands. J Immunol 171:594–599

    Article  CAS  PubMed  Google Scholar 

  29. N’Diaye EN, Branda CS, Branda SS, Nevarez L, Colonna M, Lowell C, Hamerman JA, Seaman WE (2009) TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol 184:215–223

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, Meldolesi J (2009) The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 110:284–294

    Article  CAS  PubMed  Google Scholar 

  31. Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109:1144–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, Yukawa K, Mizui M, Yamamoto M, Prasad DV, Suzuki K, Ishii M, Terai K, Moriya M, Nakatsuji Y, Sakoda S, Sato S, Akira S, Takeda K, Inui M, Takai T, Ikawa M, Okabe M, Kumanogoh A, Kikutani H (2006) Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol 8:615–622

    Article  CAS  PubMed  Google Scholar 

  33. Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB, Nakamura M, Ivashkiv LB (2009) IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol 183:2444–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crotti TN, Dharmapatni AA, Alias E, Zannettino AC, Smith MD, Haynes DR. (2012) The immunoreceptor tyrosine-based activation motif (ITAM)-related factors are increased in synovial tissue and vasculature of rheumatoid arthritic joints. Arthritis Res Ther 14(6):R245. doi:10.1186/ar4088

  35. Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, Tassi I, Takai T, Stanley SL, Miller M, Shaw AS, Colonna M (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol 10:734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bakker AB, Baker E, Sutherland GR, Phillips JH, Lanier LL (1999) Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci U S A 96:9792–9796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Inui M, Kikuchi Y, Aoki N, Endo S, Maeda T, Sugahara-Tobinai A, Fujimura S, Nakamura A, Kumanogoh A, Colonna M, Takai T (2009) Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12. Proc Natl Acad Sci U S A 106:4816–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Joyce-Shaikh B, Bigler ME, Chao CC, Murphy EE, Blumenschein WM, Adamopoulos IE, Heyworth PG, Antonenko S, Bowman EP, McClanahan TK, Phillips JH, Cua DJ (2010) Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J Exp Med 207:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin HS, Sarin R, Dixit N, Wu J, Gershwin E, Bowman EP, Adamopoulos IE (2015) Crosstalk among IL-23 and DNAX activating protein of 12 kDa-dependent pathways promotes osteoclastogenesis. J Immunol 194:316–324

    Article  CAS  PubMed  Google Scholar 

  40. Watson AA, O’Callaghan CA (2010) Crystallization and X-ray diffraction analysis of human CLEC5A (MDL-1), a dengue virus receptor. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66:29–31

    Article  CAS  Google Scholar 

  41. Chen DY, Yao L, Chen YM, Lin CC, Huang KC, Chen ST, Lan JL, Hsieh SL (2014) A potential role of myeloid DAP12-associating lectin (MDL)-1 in the regulation of inflammation in rheumatoid arthritis patients. PLoS One 9, e86105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crotti TN, Dharmapatni AA, Alias E, Haynes DR (2015) Osteoimmunology: major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. J Immunol Res 2015:281287

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ishida-Kitagawa N, Tanaka K, Bao X, Kimura T, Miura T, Kitaoka Y, Hayashi K, Sato M, Maruoka M, Ogawa T, Miyoshi J, Takeya T (2012) Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kDa (DAP12). J Biol Chem 287:17493–17502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Angata T, Tabuchi Y, Nakamura K, Nakamura M (2007) Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17:838–846

    Article  CAS  PubMed  Google Scholar 

  45. Hiruma Y, Hirai T, Tsuda E (2011) Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem Biophys Res Commun 409:424–429

    Article  CAS  PubMed  Google Scholar 

  46. Hiruma Y, Tsuda E, Maeda N, Okada A, Kabasawa N, Miyamoto M, Hattori H, Fukuda C (2013) Impaired osteoclast differentiation and function and mild osteopetrosis development in Siglec-15-deficient mice. Bone 53:87–93

    Article  CAS  PubMed  Google Scholar 

  47. Kameda Y, Takahata M, Komatsu M, Mikuni S, Hatakeyama S, Shimizu T, Angata T, Kinjo M, Minami A, Iwasaki N (2013) Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling adaptor DAP12. J Bone Miner Res 28:2463–2475

    Article  CAS  PubMed  Google Scholar 

  48. Shimizu T, Takahata M, Kameda Y, Endo T, Hamano H, Hiratsuka S, Ota M, Iwasaki N (2015) Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) mediates periarticular bone loss, but not joint destruction, in murine antigen-induced arthritis. Bone 79:65–70

    Article  CAS  PubMed  Google Scholar 

  49. Kameda Y, Takahata M, Mikuni S, Shimizu T, Hamano H, Angata T, Hatakeyama S, Kinjo M, Iwasaki N (2015) Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. Bone 71:217–226

    Article  CAS  PubMed  Google Scholar 

  50. Lanier LL (2009) DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 227:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zou W, Teitelbaum SL (2015) Absence of Dap12 and the alphavbeta3 integrin causes severe osteopetrosis. J Cell Biol 208:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faccio R, Zou W, Colaianni G, Teitelbaum SL, Ross FP (2003) High dose M-CSF partially rescues the Dap12−/− osteoclast phenotype. J Cell Biochem 90:871–883

    Article  CAS  PubMed  Google Scholar 

  53. Kim N, Takami M, Rho J, Josien R, Choi Y (2002) A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med 195:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Merck E, Gaillard C, Gorman DM, Montero-Julian F, Durand I, Zurawski SM, Menetrier-Caux C, Carra G, Lebecque S, Trinchieri G, Bates EE (2004) OSCAR is an FcRgamma-associated receptor that is expressed by myeloid cells and is involved in antigen presentation and activation of human dendritic cells. Blood 104:1386–1395

    Article  CAS  PubMed  Google Scholar 

  55. Barrow AD, Raynal N, Andersen TL, Slatter DA, Bihan D, Pugh N, Cella M, Kim T, Rho J, Negishi-Koga T, Delaisse JM, Takayanagi H, Lorenzo J, Colonna M, Farndale RW, Choi Y, Trowsdale J (2011) OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121:3505–3516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim JH, Kim K, Jin HM, Youn BU, Song I, Choi HS, Kim N (2008) Upstream stimulatory factors regulate OSCAR gene expression in RANKL-mediated osteoclast differentiation. J Mol Biol 383:502–511

    Article  CAS  PubMed  Google Scholar 

  57. Kim GS, Koh JM, Chang JS, Park BL, Kim LH, Park EK, Kim SY, Shin HD (2005) Association of the OSCAR promoter polymorphism with BMD in postmenopausal women. J Bone Miner Res 20:1342–1348

    Article  CAS  PubMed  Google Scholar 

  58. Herman S, Muller RB, Kronke G, Zwerina J, Redlich K, Hueber AJ, Gelse H, Neumann E, Muller-Ladner U, Schett G (2008) Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis Rheum 58:3041–3050

    Article  CAS  PubMed  Google Scholar 

  59. Ndongo-Thiam N, de Sallmard G, Kastrup J, Miossec P (2014) Levels of soluble osteoclast-associated receptor (sOSCAR) in rheumatoid arthritis: link to disease severity and cardiovascular risk. Ann Rheum Dis 73:1276–1277

    Article  PubMed  Google Scholar 

  60. Barrow AD, Palarasah Y, Bugatti M, Holehouse AS, Byers DE, Holtzman MJ, Vermi W, Skjodt K, Crouch E, Colonna M (2015) OSCAR is a receptor for surfactant protein D that activates TNF-alpha release from human CCR2+ inflammatory monocytes. J Immunol 194:3317–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goettsch C, Rauner M, Sinningen K, Helas S, Al-Fakhri N, Nemeth K, Hamann C, Kopprasch S, Aikawa E, Bornstein SR, Schoppet M, Hofbauer LC (2011) The osteoclast-associated receptor (OSCAR) is a novel receptor regulated by oxidized low-density lipoprotein in human endothelial cells. Endocrinology 152:4915–4926

    Article  CAS  PubMed  Google Scholar 

  62. Ochi S, Shinohara M, Sato K, Gober HJ, Koga T, Kodama T, Takai T, Miyasaka N, Takayanagi H (2007) Pathological role of osteoclast costimulation in arthritis-induced bone loss. Proc Natl Acad Sci U S A 104:11394–11399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dietrich J, Nakajima H, Colonna M (2000) Human inhibitory and activating Ig-like receptors which modulate the function of myeloid cells. Microbes Infect 2:323–329

    Article  CAS  PubMed  Google Scholar 

  64. Negishi-Koga T, Gober HJ, Sumiya E, Komatsu N, Okamoto K, Sawa S, Suematsu A, Suda T, Sato K, Takai T, Takayanagi H (2015) Immune complexes regulate bone metabolism through FcRgamma signalling. Nat Commun 6:6637

    Article  CAS  PubMed  Google Scholar 

  65. Grevers LC, de Vries TJ, Everts V, Verbeek JS, van den Berg WB, van Lent PL (2013) Immune complex-induced inhibition of osteoclastogenesis is mediated via activating but not inhibitory Fcgamma receptors on myeloid precursor cells. Ann Rheum Dis 72:278–285

    Article  CAS  PubMed  Google Scholar 

  66. MacLellan LM, Montgomery J, Sugiyama F, Kitson SM, Thummler K, Silverman GJ, Beers SA, Nibbs RJ, McInnes IB, Goodyear CS (2011) Co-opting endogenous immunoglobulin for the regulation of inflammation and osteoclastogenesis in humans and mice. Arthritis Rheum 63:3897–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, Jakobsson PJ, Baum W, Nimmerjahn F, Szarka E, Sarmay G, Krumbholz G, Neumann E, Toes R, Scherer HU, Catrina AI, Klareskog L, Jurdic P, Schett G (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harre U, Lang SC, Pfeifle R, Rombouts Y, Fruhbeisser S, Amara K, Bang H, Lux A, Koeleman CA, Baum W, Dietel K, Grohn F, Malmstrom V, Klareskog L, Kronke G, Kocijan R, Nimmerjahn F, Toes RE, Herrmann M, Scherer HU, Schett G (2015) Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat Commun 6:6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bohm S, Schwab I, Lux A, Nimmerjahn F (2012) The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 34:443–453

    Article  PubMed  Google Scholar 

  70. Scherer HU, van der Woude D, Ioan-Facsinay A, el Bannoudi H, Trouw LA, Wang J, Haupl T, Burmester GR, Deelder AM, Huizinga TW, Wuhrer M, Toes RE (2010) Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 62:1620–1629

    Article  CAS  PubMed  Google Scholar 

  71. Daeron M, Jaeger S, Du Pasquier L, Vivier E (2008) Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 224:11–43

    Article  CAS  PubMed  Google Scholar 

  72. Hayashi M, Nakashima T, Kodama T, Makrigiannis AP, Toyama-Sorimachi N, Takayanagi H (2010) Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation. Biochem Biophys Res Commun 393:432–438

    Article  CAS  PubMed  Google Scholar 

  73. Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, McMahon LA, Hicks DG, Panepento B, Keng PC, Ritchlin CT (2012) Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res 27:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nagahama K, Aoki K, Nonaka K, Saito H, Takahashi M, Varghese BJ, Shimokawa H, Azuma M, Ohya K, Ohyama K (2004) The deficiency of immunoregulatory receptor PD-1 causes mild osteopetrosis. Bone 35:1059–1068

    Article  CAS  PubMed  Google Scholar 

  76. Aoki K, Didomenico E, Sims NA, Mukhopadhyay K, Neff L, Houghton A, Amling M, Levy JB, Horne WC, Baron R (1999) The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in me(v)/me(v) mutant mice. Bone 25:261–267

    Article  CAS  PubMed  Google Scholar 

  77. Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, Humphries RK, Krystal G, Teitelbaum SL, Ross FP (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8:943–949

    Article  CAS  PubMed  Google Scholar 

  78. Yoon SH, Lee YD, Ha J, Lee Y, Kim HH (2012) TLT-1s, alternative transcripts of triggering receptor expressed on myeloid cell-like transcript-1 (TLT-1), inhibits the triggering receptor expressed on myeloid cell-2 (TREM-2)-mediated signaling pathway during osteoclastogenesis. J Biol Chem 287:29620–29626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chung DH, Humphrey MB, Nakamura MC, Ginzinger DG, Seaman WE, Daws MR (2003) CMRF-35-like molecule-1, a novel mouse myeloid receptor, can inhibit osteoclast formation. J Immunol 171:6541–6548

    Article  CAS  PubMed  Google Scholar 

  80. Mori Y, Tsuji S, Inui M, Sakamoto Y, Endo S, Ito Y, Fujimura S, Koga T, Nakamura A, Takayanagi H, Itoi E, Takai T (2008) Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J Immunol 181:4742–4751

    Article  CAS  PubMed  Google Scholar 

  81. Li S, Miller CH, Giannopoulou E, Hu X, Ivashkiv LB, Zhao B (2014) RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest 124:5057–5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Everts V, de Vries TJ, Helfrich MH (2009) Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta 1792:757–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank T. P. Quinn for helpful suggestions and editing the manuscript. M. B. H. is supported by NIH grant AR064211. M. C. N. is supported by a VA Merit Review, NIH grant AG046282, the UCSF-Stanford Arthritis Center of Excellence funded by the Great Western Region of the Arthritis Foundation, the Rheumatology Research Foundation, and the Russell/Engleman Rheumatology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. Nakamura.

Ethics declarations

Conflict of Interest

Mary Beth Humphrey and Mary C. Nakamura declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphrey, M.B., Nakamura, M.C. A Comprehensive Review of Immunoreceptor Regulation of Osteoclasts. Clinic Rev Allerg Immunol 51, 48–58 (2016). https://doi.org/10.1007/s12016-015-8521-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8521-8

Keywords

Navigation