Skip to main content

Plant Microbiome: Composition and Functions in Plant Compartments

  • Chapter
  • First Online:
The Brazilian Microbiome

Abstract

Knowledge of the vastness of microbial diversity associated with plants is still limited. Plant microbiome structure and functions are shaped by several factors, including host genotype and developmental stage, the presence or absence of diseases, and environmental conditions. These factors may lead to distinct microbial communities in the rhizosphere, endosphere, and phyllosphere. Studies directed to microbial interactions in plant compartments are fundamental for understanding the microbial ecology of phytobiomes, enabling the development of microbiome-based technologies in the search for sustainable agriculture. In this chapter, we describe plant compartments, i.e., the rhizosphere, phyllosphere and endosphere, and the more common bacterial composition of each compartment. We also discuss manipulation of the plant microbiome toward improved plant health. Advances in this field will lead to strategies where the manipulation of the plant microbiome will allow the reduction of pesticide and fertilizer use in field crops, paving the way to a more sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lederberg J, McCray AT (2001) ‘Ome Sweet Omics’ - a genealogical treasury of words. The Scientist 15:8

    Google Scholar 

  2. Boon E, Meehan CJ, Whidden C, Wong DH, Langille MG, Beiko RG (2014) Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 38(1):90–118. doi:10.1111/1574-6976.12035

    Article  CAS  PubMed  Google Scholar 

  3. Melcher U, Verma R, Schneider WL (2014) Metagenomic search strategies for interactions among plants and multiple microbes. Front Plant Sci 5:268. doi:10.3389/fpls.2014.00268

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ofek M, Voronov-Goldman M, Hadar Y, Minz D (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs active communities. Environ Microbiol 16(7):2157–2167. doi:10.1111/1462-2920.12228

    Article  CAS  PubMed  Google Scholar 

  5. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–3. doi:10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

  6. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100. doi:10.1126/science.1203980

    Article  CAS  PubMed  Google Scholar 

  7. Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75(1):2–16. doi:10.1111/j.1574-6941.2010.00938.x

    Article  CAS  PubMed  Google Scholar 

  8. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617. doi:10.1016/j.tim.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  9. Curl EA, Truelove B (1986) The rhizosphere. Springer-Verlag, New York, pp 1–8

    Google Scholar 

  10. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F (2007) Microbial diversity and microbial activity in the rhizosphere. Ci Suelo 25:89–97

    Google Scholar 

  11. Aira M, Gómez-Brandón M, Lazcano C, Baath E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281. doi:10.1016/j.soilbio.2010.08.029

    Article  CAS  Google Scholar 

  12. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi:10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  13. Philippot L, Raaijmakers JM, Lemanceau P, Puttem WH van der (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109

    Google Scholar 

  14. Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One. doi:10.1371/journal.pone.0100709

  15. McNear Jr DH (2013) The rhizosphere–roots, soil and everything in between. Nat Educ Knowl 4(3):1. http://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soil-and-67500617. Accessed 11 Oct 2015

  16. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. doi:10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  17. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86–90. doi:10.1038/nature11237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mendes LW, Kuramae EE, Navarrete AA, Veen JA, van Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. doi:10.1038/ismej.2014.17

    Google Scholar 

  19. Lebeis SL (2015) Greater than the sum of their parts: characterizing plant microbiomes at the community level. Curr Opin Plant Biol 24:82–86. doi:10.1016/j.pbi.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  20. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EV, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95. doi:10.1038/nature11336

    Article  CAS  PubMed  Google Scholar 

  21. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  22. Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2(12):1221–1230. doi:10.1038/ismej.2008.80

    Article  CAS  PubMed  Google Scholar 

  23. Chaparro JM, Bradi DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803. doi:10.1038/ismej.2013.196

    Article  CAS  PubMed  Google Scholar 

  24. Schenk PM, Carnalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184. doi:10.1016/j.tibtech.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  25. Lau JA, Lennon J (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224. doi:10.1111/j.1469-8137.2011.03790.x

    Article  PubMed  Google Scholar 

  26. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883. doi:10.1128/AEM.69.4.1875-1883.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lambais MR, Crowley DE, Cury JC, Büll RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312(5782):1917. doi: 10.1126/science.1124696

    Google Scholar 

  28. Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agric 71(6):528–539. doi:10.1590/0103-9016-2014-0195

    Article  Google Scholar 

  29. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840. doi:10.1038/nrmicro2910

    Article  CAS  PubMed  Google Scholar 

  30. Baldotto LE, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54(11):918–931. doi:10.1139/W08-087

    Article  CAS  PubMed  Google Scholar 

  31. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390. doi:10.1038/ismej.2011.192

    Article  CAS  PubMed  Google Scholar 

  32. Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184(2):438–448. doi:10.1111/j.1469-8137.2009.02990.x

    Article  CAS  PubMed  Google Scholar 

  33. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106(38):16428–16433. doi:10.1073/pnas.0905240106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet 15(12):797–813. doi:10.1038/nrg3748

    Article  CAS  PubMed  Google Scholar 

  35. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi:10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  36. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6(10):1812–1822. doi:10.1038/ismej.2012.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755. doi:10.1111/j.1365-2672.2008.03906.x

    Article  CAS  PubMed  Google Scholar 

  38. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735. doi:10.1111/j.1574-6976.2008.00123.x

    Article  CAS  PubMed  Google Scholar 

  39. Berlec A (2012) Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci 193:96–102. doi:10.1016/j.plantsci.2012.05.010

    Article  PubMed  Google Scholar 

  40. Lindow SE (1996) Role of immigration and other processes in determining epiphytic bacterial populations. Aerial Plant Surface Microbiol 155–168. doi:10.1007/978-0-585-34164-4_10

  41. Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867. doi:10.1128/MMBR.64.4.847-867.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones K (1970) Nitrogen fixation in the phyllosphere of the Douglas fir, Pseudotsuga douglasii. Ann Bot 34(1):239–244

    Article  Google Scholar 

  43. Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117(1–2):9–18. doi:10.1007/s004420050625

    Article  PubMed  Google Scholar 

  44. Kishore GK, Pande S, Podile AR (2005) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95(10):1157–1165. doi:10.1094/PHYTO-95-1157

    Article  CAS  PubMed  Google Scholar 

  45. Brandl MT, Quinones B, Lindow SE (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci 98(6):3454–3459. doi:10.1073/pnas.061014498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5(1):e00682–e00613. doi:10.1128/mBio.00682-13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4(6):719–728. doi:10.1038/ismej.2010.9

    Article  CAS  PubMed  Google Scholar 

  48. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471. doi:10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  49. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5(148). doi:10.3389/fmicb.2014.00148

    Google Scholar 

  50. Coombs JT, Franco CM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69(7):4260–4262. doi:10.1128/AEM.69.7.4260-4262.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693. doi:10.1128/AEM.71.4.1685-1693.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197. doi:10.1007/s00248-011-9883-y

    Article  PubMed  Google Scholar 

  53. Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438. doi:10.1371/journal.pone.0030438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hameed A, Yeh MW, Hsieh YT, Chung WC, Lo CT, Young LS (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 394(1–2):177–197. doi:10.1007/s11104-015-2506-5

    Article  CAS  Google Scholar 

  55. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  56. Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52(1):46–58

    Google Scholar 

  57. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50(4):239–249. doi:10.1139/w03-118

    Article  CAS  PubMed  Google Scholar 

  58. de Melo Pereira GV, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417. doi:10.1007/s00248-011-9919-3

    Article  PubMed  Google Scholar 

  59. Eevers N, Beckers B, de Beeck MO, White JC, Vangronsveld J, Weyens N (2015) Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing. Syst Appl Microbiol 23

    Google Scholar 

  60. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(06):661–686. doi: 10.1017/S095375620500273X

    Google Scholar 

  61. Malcolm GM, Kuldau GA, Gugino BK, Jiménez-Gasco MD (2013) Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103(6):538–544. doi:10.1094/PHYTO-08-12-0192-LE

    Article  CAS  PubMed  Google Scholar 

  62. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267. doi:10.1128/AEM.01222-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12(1):1. doi:10.1186/1471-2180-12-3

    Google Scholar 

  64. Waqas M, Khan AL, Lee IJ (2014) Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact 9(1):478–487. doi:10.1080/17429145.2013.860562

    Article  CAS  Google Scholar 

  65. Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ (2013) The epichloae: alkaloid diversity and roles in symbiosis with grasses. Curr Opin Plant Biol 16(4):480–488. doi:10.1016/j.pbi.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  66. Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. doi:10.1016/j.micres.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  67. Carvalho TL, Balsemão-Pires E, Saraiva RM, Ferreira PC, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot. eru319. doi:10.1093/jxb/eru319

    Google Scholar 

  68. Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107(6):1519–1532. doi:10.1007/s10482-015-0445-z

    Article  CAS  PubMed  Google Scholar 

  69. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19(8):827–837. doi:10.1094/MPMI-19-0827

    Article  CAS  PubMed  Google Scholar 

  70. Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue B, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:1–25. doi:10.3389/fpls.2012.00108

    Article  Google Scholar 

  71. Ownley BH, Gwinn KD, Vega FE (2009) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. In: The Ecology of Fungal Entomopathogens pp. 113–128. Springer Netherlands. doi: 10.1007/978-90-481-3966-8_9

  72. Jeong H, Choi SK, Kloepper JW, Ryu CM (2014) Genome sequence of the plant endophyte Bacillus pumilus INR7, triggering induced systemic resistance in field crops. Genome Announc 2(5):e01093–e01014

    Article  PubMed  PubMed Central  Google Scholar 

  73. Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185(2):554–567. doi:10.1111/j.1469-8137.2009.03079.x

    Article  CAS  PubMed  Google Scholar 

  74. Baker KL, Langenheder S, Nicol GW, Ricketts D, Killham K, Campbell CD, Prosser JI (2009) Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies. Soil Biol Biochem 41(11):2292–2298. doi:10.1016/j.soilbio.2009.08.010

    Article  CAS  Google Scholar 

  75. Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68(3):411–420. doi:10.1007/s10725-012-9730-2

    Article  CAS  Google Scholar 

  76. Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70(3):1475–1482. doi:10.1128/AEM.70.3.1475-1482.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2015) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 4:1–6. doi:10.1007/s11104-015-2495-4

    Google Scholar 

  78. Li CH, Shi L, Han Q, Hu HL, Zhao MW, Tang CM, Li SP (2012) Biocontrol of Verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate. J Appl Microbiol 113(3):641–651. doi:10.1111/j.1365-2672.2012.05371.x

    Article  PubMed  Google Scholar 

  79. Marques JM, da Silva TF, Vollú RE, de Lacerda JR, Blank AF, Smalla K, Seldin L (2015) Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Appl Soil Ecol 96:273–281. doi:10.1016/j.apsoil.2015.08.020

    Article  Google Scholar 

  80. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  81. Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60(1):157–166. doi:10.1007/s00248-010-9658-x

    Article  PubMed  Google Scholar 

  82. Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K (2013) Community composition of root-associated fungi in a Quercus-dominated temperate forest:“codominance” of mycorrhizal and root-endophytic fungi. Ecol Evol 3(5):1281–1293. doi:10.1002/ece3.546

    Article  PubMed  PubMed Central  Google Scholar 

  83. Higgins KL, Arnold AE, Coley PD, Kursar TA (2014) Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol 8:1–1. doi:10.1016/j.funeco.2013.12.005

    Article  Google Scholar 

  84. Glynou K, Ali T, Buch AK, Haghi Kia S, Ploch S, Xia X, Çelik A, Thines M, Maciá-Vicente JG (2016) The local environment determines the assembly of root endophytic fungi at a continental scale. Environ Microbiol 18(8):2418–2434. doi:10.1111/1462-2920.13112

    Article  CAS  PubMed  Google Scholar 

  85. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. doi:10.1016/j.copbio.2013.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965. doi:10.1007/s00253-015-6487-3

    Article  CAS  PubMed  Google Scholar 

  87. Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50(2):249–262. doi:10.1007/s00374-013-0854-y

    Article  CAS  Google Scholar 

  88. Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695. doi:10.1007/s12275-014-4002-7

    Article  CAS  PubMed  Google Scholar 

  89. ONU (2013) Demographic components of future population growth. Tech Pap. (3)

    Google Scholar 

  90. Hwang SF, Ahmed HU, Gossen BD, Kutcher HR, Brandt SA, Strelkov SE, Chang KF, Turnbull GD (2009) Effect of crop rotation on soil pathogen population and dynamics and canola seedlings establishment. Plant Pathol J 8(3):106–112. doi:10.3923/ppj.2009.106.112

    Article  Google Scholar 

  91. Bakker MG, Chaparro JM, Manter DK, Vivanco JM (2015) Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil 392(1–2):115–126. doi:10.1007/s11104-015-2446-0

    Article  CAS  Google Scholar 

  92. Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Mana 3:1

    Google Scholar 

  93. de Boer W, Wagenaar A-M, Klein Gunnewiek PJ, van Veen J (2007) In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiol Ecol 59(1):177–185. doi:10.1111/j.1574-6941.2006.00197.x

    Article  PubMed  Google Scholar 

  94. Garbeva P, de Boer W (2009) Inter-specific interactions between carbon-limited soil bacteria affect behavior and gene expression. Microb Ecol 58(1):36–46. doi:10.1007/s00248-009-9502-3

    Article  CAS  PubMed  Google Scholar 

  95. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30. doi:10.1023/A:1004777115628

    Article  CAS  Google Scholar 

  96. Sharma SB, Sayyed RZ, Trivedi MH, Gobi T (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2(1):587

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bashan Y, De-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives [1998–2013]. Plant Soil 378(1–2):1–33. doi:10.1007/s11104-013-1956-x

    Article  CAS  Google Scholar 

  98. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321(1–2):363–383. doi:10.1007/s11104-009-0001-6

    Article  CAS  Google Scholar 

  99. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360(1–2):1–13. doi:10.1007/s11104-012-1361-x

    Article  CAS  Google Scholar 

  100. Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507. doi:10.3389/fpls.2015.00507

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wissuwa M, Mazzola M, Picard C (2008) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321(1–2):409–430. doi:10.1007/s11104-008-9693-2

    Google Scholar 

  102. Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008) New approach for capturing soluble root exudates in forest soils. Funct Ecol 22(6):990–999. doi:10.1111/j.1365-2435.2008.01495.x

    Article  Google Scholar 

  103. Falk SP, Gadoury DM, Pearson RC, Seem RC (1995) Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Dis 79(5):483–490

    Article  Google Scholar 

  104. Gu L, Bai Z, Jin B, Hu Q, Wang H, Zhuang G et al (2010) Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere. J Environ Sci 22(1):134–141. doi:10.1016/S1001-0742(09]60084-X

    Article  CAS  Google Scholar 

  105. Zhang B, Bai Z, Hoefel D, Tang L, Wang X, Li B et al (2009) The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Sci Total Environ 407(6):1915–1922. doi:10.5897/AJB2013.1

    Article  CAS  PubMed  Google Scholar 

  106. Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O et al (2014) Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol 80(12):3585–3596. doi:10.1128/AEM.00415-14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rossmann, M., Sarango-Flores, S.W., Chiaramonte, J.B., Kmit, M.C.P., Mendes, R. (2017). Plant Microbiome: Composition and Functions in Plant Compartments. In: Pylro, V., Roesch, L. (eds) The Brazilian Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-59997-7_2

Download citation

Publish with us

Policies and ethics