Skip to main content
Log in

Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, we examined the bacterial endophyte community of potato (Solanum tuberosum) cultivar/clones using two different molecular-based techniques (bacterial automated ribosomal intergenic spacer analysis (B-ARISA) and pyrosequencing). B-ARISA profiles revealed a significant difference in the endophytic community between cultivars (perMANOVA, p < 0.001), and canonical correspondence analysis showed a significant correlation between the community structure and plant biomass (p = 0.001). Pyrosequencing detected, on average, 477 ± 71 bacterial operational taxonomic units (OTUs, 97% genetic similarity) residing within the roots of each cultivar, with a Chao estimated total OTU richness of 1,265 ± 313. Across all cultivars, a total of 238 known genera from 15 phyla were identified. Interestingly, five of the ten most common genera (Rheinheimera, Dyadobacter, Devosia, Pedobacter, and Pseudoxanthomonas) have not, to our knowledge, been previously reported as endophytes of potato. Like the B-ARISA analysis, the endophytic communities differed between cultivar/clones (∫-libshuff, p < 0.001) and exhibited low similarities on both a presence/absence (0.145 ± 0.019) and abundance (0.420 ± 0.081) basis. Seventeen OTUs showed a strong positive (r > 0.600) or negative (r < −0.600) correlation with plant biomass, suggesting a possible link between plant production and endophyte abundance. This study represents one of the most comprehensive assessments of the bacterial endophytic communities to date, and similar analyses in other plant species, cultivars, or tissues could be utilized to further elucidate the potential contribution(s) of endophytic communities to plant physiology and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  2. Kobayashi DY, Columbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–236

    Google Scholar 

  3. Torsvik VJ, Gokoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  PubMed  Google Scholar 

  4. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  CAS  PubMed  Google Scholar 

  5. de Souza AO, Pamphile JA, Sartori CLDM, De Rocha C, Azevedo JL (2004) Plant–microbe interaction between maize (Zea mays L.) and endophytic microorganisms observed by scanning electron microscopy. Acta Sci Biol Sci 26:357–359

    Article  Google Scholar 

  6. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    Article  PubMed  Google Scholar 

  7. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the under-explored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  Google Scholar 

  8. Edwards RA, Rodrguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexancer EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed  Google Scholar 

  9. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed  Google Scholar 

  10. Roesch LF, Lorca GL, Casella G, Giongo A, Naranjo A, Pionzio AM, Li N, Mai V, Wasserfall CH, Schatz D, Atkinson MA, Neu J, Triplett EW (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3:536–548

    Article  CAS  PubMed  Google Scholar 

  11. Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and waterwater. In: Greenberg AE, Clesceri LS, Eaton AD (eds) American Public Health Association, 18th edn. American Water Works Association and Water Environmental Federation, Washington, pp 82–93

    Google Scholar 

  12. Meyer JM, Hoy MA (2008) Removal of fungal contaminants and their DNA from the surface of Diaphorina citri (Hemiptera: Psyllidae) prior to a molecular survey of endosymbionts. Fla Entomol 91:702–705

    Article  Google Scholar 

  13. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  14. Manter DK, Vivanco JM (2007) Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Methods 71:7–14

    Article  CAS  PubMed  Google Scholar 

  15. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    Article  CAS  PubMed  Google Scholar 

  16. Lane DJ (1991) rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147

    Google Scholar 

  17. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  PubMed  Google Scholar 

  18. Marchesi JR, Takuichi S, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade GM (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  PubMed  Google Scholar 

  19. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  CAS  PubMed  Google Scholar 

  20. Eisen JA (2007) Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 5:e82

    Article  PubMed  Google Scholar 

  21. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare bioshpere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123. doi:10.1111/j.1462-2920.2009.02051.x

    Article  CAS  PubMed  Google Scholar 

  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assessment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  Google Scholar 

  24. McCune B, Grace JB (2002) Analysis of Ecological Communities MJM Software Design. Gleneden Beach, Oregon

    Google Scholar 

  25. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  26. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  27. Chao A, Ma MC, Yang MCK (1993) Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80:193–201

    Article  Google Scholar 

  28. Schloss PD, Handelsman J (2006) Introducing SONS, A tool that compares the membership of microbial communities. Appl Environ Microbiol 71:1501–1506

    Article  Google Scholar 

  29. Schloss PD (2008) Evaluating different approaches that test whether microbial communities have the same structure. ISME J 2:265–275

    Article  PubMed  Google Scholar 

  30. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  Google Scholar 

  31. Evans J, Sheneman L, Foster JA (2006) Relaxed neighbor-joining: a fast distance-based phylogenetic tree construction method. J Mol Evol 62:785–792

    Article  CAS  PubMed  Google Scholar 

  32. Berg G, Krechel A, Ditz M, Sikora RA, Ultrich A, Hallmann J (2005) Endophytic and epiphytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  33. Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    CAS  PubMed  Google Scholar 

  34. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  CAS  PubMed  Google Scholar 

  35. Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Article  CAS  Google Scholar 

  36. Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  37. Ranjard L, Poly F, Lata J-C, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487

    Article  CAS  PubMed  Google Scholar 

  38. Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230

    Article  Google Scholar 

  39. Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant–microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    Article  CAS  PubMed  Google Scholar 

  40. Innes L, Hobbs PJ, Bardgett RD (2004) The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertility Soils 40:7–13

    Article  Google Scholar 

  41. Westover KM, Kennedy AC, Kelley SE (1997) Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J Ecol 85:863–873

    Article  Google Scholar 

  42. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  43. Quadt-Hallmann A, Hallmann J, Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria. Can J Microbiol 42:1144–1154

    Article  Google Scholar 

  44. Gough C, Galera C, CVasse J, Webster G, Cocking EC, Denarie J (1997) Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans. Mol Plant Microbe Interact 10:560–570

    Article  CAS  PubMed  Google Scholar 

  45. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  46. Rudrappa T, Bais HP (2007) Arabidopsis thaliana root surface chemistry regulates in planta biofilm formation of Bacillus subtilus. Plant Sig Behav 2:349–350

    Google Scholar 

  47. Bacon CW, Hinton DM (2007) Bacterial endophytes: the endophytic niches, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, New York, pp 155–194

    Google Scholar 

  48. Long HH, Furuya N, Kurose D, Takeshita M, Takanami Y (2003) Isolation of endophytic bacteria from Solanum sp. and their antibacterial activity against plant pathogenic bacteria. J Fac Agric Kuyushu Univ 48:21–28

    Google Scholar 

  49. Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  50. Indiragandhi P, Anandham R, Madhaiyan M (2008) Characterization of plant growth-promoting traits of bacterial isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  51. Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  52. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  53. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  54. Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizospher colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  55. Preston GM (2003) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond, Ser B: Biol Sci 359:907–918

    Article  Google Scholar 

  56. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. Manter.

Electronic Supplementary Material

Table S1

(DOC 27 kb)

Table S2

(DOC 33 kb)

Table S3

(XLS 68 kb)

Table S4

(XLS 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manter, D.K., Delgado, J.A., Holm, D.G. et al. Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots. Microb Ecol 60, 157–166 (2010). https://doi.org/10.1007/s00248-010-9658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9658-x

Keywords

Navigation