Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 618 Accesses

Abstract

In this chapter, two-way fluid-structure interaction (FSI) simulations are performed and results are compared to rigid wall simulations for the pre-operative case analysed in the previous chapter, in order to evaluate the importance of considering vessel wall and intimal flap motion.

The work presented in this chapter was published in ‘Aortic dissection simulation models for clinical support: fluid-structure interaction versus rigid wall models’, Biomedical Engineering OnLine (Alimohammadi et al. 2015b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alimohammadi, M., Sherwood, J. M., Karimpour, M., Agu, O., Balabani, S., & Díaz-Zuccarini, V. (2015b). Aortic dissection simulation models for clinical support: Fluid-structure interaction versus rigid wall models. Biomedical Engineering Online, 14, 34.

    Google Scholar 

  • Brown, A. G., Shi, Y., Marzo, A., Staicu, C., Valverde, I., Beerbaum, P., et al. (2012). Accuracy versus computational time translating aortic simulations to the clinic. Journal of Biomechanics, 45(3), 516–523.

    Article  Google Scholar 

  • Chandra, S., Raut, S. S., Jana, A., Biederman, R. W., Doyle, M., Muluk, S. C., et al. (2013). Fluid-structure interaction modeling of abdominal aortic aneurysms: The impact of patient-specific inflow conditions and fluid/solid coupling. Journal of Biomechanical Engineering, 135(8), 081001.

    Article  Google Scholar 

  • Chen, D., ller Eschner, M. M., von Tengg-Kobligk, H., Barber, D., Bockler, D., Hose, R., et al. (2013a). A patient-specific study of type-B aortic dissection: Evaluation of true-false lumen blood exchange. Biomedical Engineering Online, 12, 65.

    Google Scholar 

  • Chiu, J.-J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiological Reviews, 91(1), 327–387.

    Article  MathSciNet  Google Scholar 

  • Colciago, C. M., Deparis, S., & Quarteroni, A. (2014). Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics. Journal of Computational and Applied Mathematics, 265, 120–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Criado, F. J. (2011). Aortic dissection: A 250-year perspective. Texas Heart Institute Journal, 38(6), 694–700.

    Google Scholar 

  • Crosetto, P., Reymond, P., Deparis, S., & Kontaxakis, D. (2011). Fluid-structure interaction simulation of aortic blood flow. Computers and Fluids, 43, 46–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Das, A., Paul, A., Taylor, M. D., & Banerjee, R. K. (2015). Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm. Biomedical Engineering Online, 14(Suppl. 1), S18.

    Google Scholar 

  • de Jong, P. A., Hellings, W. E., Takx, R. A. P., IÅ¡gum, I., van Herwaarden, J. A., & Mali, W. P. T. M. (2014). Computed tomography of aortic wall calcifications in aortic dissection patients. PLoS ONE, 9(7), e102036.

    Article  Google Scholar 

  • Erbel, R., Alfonso, F., Boileau, C., Dirsch, O., Eber, B., Haverich, A., et al. (2001). Diagnosis and management of aortic dissection task force on aortic dissection, European society of cardiology. European Heart Journal, 22(18), 1642–1681.

    Article  Google Scholar 

  • Erbel, R., & Eggebrecht, H. (2006). Aortic dimensions and the risk of dissection. British Heart Journal, 92(1), 137–142.

    Article  Google Scholar 

  • Francois, C. J., Markl, M., Schiebler, M. L., Niespodzany, E., Landgraf, B. R., Schlensak, C., et al. (2013). Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections. The Journal of Thoracic and Cardiovascular Surgery, 145(5), 1359–1366.

    Article  Google Scholar 

  • Ganten, M.-K., Weber, T. F., von Tengg-Kobligk, H., Böckler, D., Stiller, W., Geisbüsch, P., et al. (2009). Motion characterization of aortic wall and intimal flap by ECG-gated CT in patients with chronic B-dissection. European Journal of Radiology, 72(1), 146–153.

    Article  Google Scholar 

  • Gao, F., Guo, Z., Sakamoto, M., & Matsuzawa, T. (2006). Fluid-structure Interaction within a layered aortic arch model. Journal of Biological Physics, 32(5), 435–454.

    Article  Google Scholar 

  • Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of The Royal Society Interface, 3(6), 15–35.

    Article  Google Scholar 

  • Gee, M. W., Förster, C., & Wall, W. A. (2010). A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. International Journal for Numerical Methods in Biomedical Engineering, 26(1), 52–72.

    Article  MATH  Google Scholar 

  • Gijsen, F., van de Vosse, F., & Janssen, J. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32, 601–608.

    Article  Google Scholar 

  • Goubergrits, L., Riesenkampff, E., Yevtushenko, P., Schaller, J., Kertzscher, U., Berger, F., et al. (2014). Is MRI-based CFD able to improve clinical treatment of coarctations of aorta? Annals of Biomedical Engineering, 43(1), 168–176.

    Article  Google Scholar 

  • Karmonik, C., Duran, C., Shah, D. J., Anaya-Ayala, J. E., Davies, M. G., Lumsden, A. B., et al. (2012a). Preliminary findings in quantification of changes in septal motion during follow-up of type B aortic dissections. Journal of Vacscular Surgery, 55(5), 1419–1426.e1.

    Google Scholar 

  • Khanafer Khalil, K., & Berguer, R. (2009). Fluid-structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. Journal of Biomechanics, 42, 2642–2648.

    Google Scholar 

  • Khan, I. A., & Nair, C. K. (2002). Clinical, diagnostic, and management perspectives of aortic dissection. Chest Journal, 122(1), 311–328.

    Article  Google Scholar 

  • Kim, H. J., Vignon-Clementel, I. E., Figueroa, C. A., LaDisa, J. F., Jansen, K. E., Feinstein, J. A., et al. (2009). On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annals of Biomedical Engineering, 37(11), 2153–2169.

    Article  Google Scholar 

  • Lantz, J., Dyverfeldt, P., & Ebbers, T. (2014). Improving blood flow simulations by incorporating measured subject-specific wall motion. Cardiovascular Engineering and Technology, 5(3), 261–269.

    Article  Google Scholar 

  • Lantz, J., Renner, J., nne, T. L., & Karlsson, M. (2015). Is aortic wall shear stress affected by aging? an image-based numerical study with two age groups. Medical Engineering and Physics, 37(3), 265–271.

    Article  Google Scholar 

  • LePage, M. A., Quint, L. E., Sonnad, S. S., Deeb, G. M., & Williams, D. M. (2001). Aortic dissection: CT features that distinguish true lumen from false lumen. American Journal of Roentgenology, 177(1), 207–211.

    Article  Google Scholar 

  • Malayeri, A. A., Natori, S., Bahrami, H., Bertoni, A. G., Kronmal, R., Lima, J. A. C., et al. (2008). Relation of aortic wall thickness and distensibility to cardiovascular risk factors (from the multi-ethnic study of atherosclerosis [MESA]). The American Journal of Cardiology, 102(4), 491–496.

    Article  Google Scholar 

  • Malek, A. M., Alper, S. L., & Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis, JAMA. The Journal of the American Medical Association, 282(21), 2035–2042.

    Article  Google Scholar 

  • Meng, H., Tutino, V. M., Xiang, J., & Siddiqui, A. (2014). High WSS or low WSS? complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. AJNR American Journal of Neuroradiology, 35(7), 1254–1262.

    Article  Google Scholar 

  • Midulla, M., Moreno, R., Baali, A., Chau, M., Negre-Salvayre, A., Nicoud, F., et al. (2012). Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): Presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations. European Radiology, 22(10), 2094–2102.

    Article  Google Scholar 

  • Moireau, P., Bertoglio, C., Xiao, N., Figueroa, C. A., Taylor, C. A., Chapelle, D., et al. (2013). Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomechanics and Modeling in Mechanobiology, 12(3), 475–496.

    Article  Google Scholar 

  • Moireau, P., Xiao, N., Astorino, M., Figueroa, C. A., Chapelle, D., Taylor, C. A., et al. (2011). External tissue support and fluid-structure simulation in blood flows. Biomechanics and Modeling in Mechanobiology, 11, 1–18.

    Article  Google Scholar 

  • Nathan, D. P., Xu, C., Gorman, III, J. H., Fairman, R. M., Bavaria, J. E., Gorman, R. C., et al. (2011). Pathogenesis of acute aortic dissection: A finite element stress analysis. The Annals of Thoracic Surgery, 91(2), 458–463.

    Google Scholar 

  • Nordon, I. M., Hinchliffe, R. J., Loftus, I. M., Morgan, R. A., & Thompson, M. M. (2011). Management of acute aortic syndrome and chronic aortic dissection. Cardiovascular and Interventional Radiology, 34(5), 890–902.

    Article  Google Scholar 

  • Pasta, S., Cho, J.-S., Dur, O., Pekkan, K., & Vorp, D. (2013). Computer modeling for the prediction of thoracic aortic stent graft collapse. Journal of Vascular Surgery, 57(5), 1353–1361.

    Article  Google Scholar 

  • Prasad, A., Xiao, N., Gong, X.-Y., Zarins, C. K., & Figueroa, C. A. (2012). A computational framework for investigating the positional stability of aortic endografts. Biomechanics and Modeling in Mechanobiology, 12(5), 869–887.

    Article  Google Scholar 

  • Qiao, A., Yin, W., & Chu, B. (2014). Numerical simulation of fluid-structure interaction in bypassed DeBakey III aortic dissection. Computer Methods in Biomechanics and Biomedical Engineering, 18(11), 1173–1180.

    Article  Google Scholar 

  • Raghavan, M. L., Ma, B., & Fillinger, M. F. (2006). Non-invasive determination of zero-pressure geometry of arterial aneurysms. Annals of Biomedical Engineering, 34(9), 1414–1419.

    Article  Google Scholar 

  • Raghavan, M. L., & Vorp, D. A. (2000). Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics, 33, 475–482.

    Article  Google Scholar 

  • Reymond, P., Crosetto, P., Deparis, S., Quarteroni, A., & Stergiopulos, N. (2013). Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Medical Engineering and Physics, 35(6), 784–791.

    Article  Google Scholar 

  • Rudenick, P. A., Bijnens, B. H., Garcia-Dorado, D., & Evangelista, A. (2013). An in vitro phantom study on the influence of tear size and configuration on the hemodynamics of the lumina in chronic type B aortic dissections. Journal of Vascular Surgery, 57(2), 464–474.e5.

    Google Scholar 

  • Speelman, L., Bosboom, E. M. H., Schurink, G. W. H., Buth, J., Breeuwer, M., Jacobs, M. J., et al. (2009). Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. Journal of Biomechanics, 42(11), 1713–1719.

    Article  Google Scholar 

  • Speelman, L., Bosboom, E. M. H., Schurink, G. W. H., Hellenthal, F. A. M. V. I., Buth, J., Breeuwer, M., et al. (2008). Patient-specific AAA wall stress analysis: 99-percentile versus peak stress. European Journal of Vascular and Endovascular Surgery, 36(6), 668–676.

    Article  Google Scholar 

  • Thubrikar, M. J., Agali, P., & Robicsek, F. (1999). Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections. Journal of Medical Engineering & Technology, 23(4), 127–134.

    Article  Google Scholar 

  • Torii, R., Keegan, J., Wood, N. B., Dowsey, A. W., Hughes, A. D., Yang, G.-Z., et al. (2009). The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: A combined MR and CFD study. The British Journal of Radiology, 82(1), S24–S32.

    Article  Google Scholar 

  • Torii, R., Keegan, J., Wood, N. B., Dowsey, A. W., Hughes, A. D., Yang, G.-Z., et al. (2010). MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Annals of Biomedical Engineering, 38(8), 2606–2620.

    Article  Google Scholar 

  • Wen, C.-Y., Yang, A.-S., Tseng, L.-Y., & Chai, J.-W. (2009). Investigation of pulsatile flowfield in healthy thoracic aorta models. Annals of Biomedical Engineering, 38(2), 391–402.

    Article  Google Scholar 

  • Xenos, M., Rambhia, S. H., Alemu, Y., Einav, S., Labropoulos, N., Tassiopoulos, A., et al. (2010). Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Annals of Biomedical Engineering, 38(11), 3323–3337.

    Article  Google Scholar 

  • Xiang, J., Natarajan, S. K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L. N., et al. (2010). Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 42(1), 144–152.

    Article  Google Scholar 

  • Xiao, N., Alastruey, J., & Alberto Figueroa, C. (2013). A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering, 30(2), 204–231.

    Article  MathSciNet  Google Scholar 

  • Yang, S., Li, X., Chao, B., Wu, L., Cheng, Z., Duan, Y., et al. (2014). Abdominal aortic intimal flap motion characterization in acute aortic dissection: Assessed with retrospective ECG-gated thoracoabdominal aorta dual-source CT angiography. PLoS ONE, 9(2), e87664.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Alimohammadi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alimohammadi, M. (2018). Role of Vessel Wall Motion in Aortic Dissection. In: Aortic Dissection: Simulation Tools for Disease Management and Understanding. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-56327-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56327-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56326-8

  • Online ISBN: 978-3-319-56327-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics