Skip to main content
Log in

MR Image-Based Geometric and Hemodynamic Investigation of the Right Coronary Artery with Dynamic Vessel Motion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a fully subject-specific model of the right coronary artery (RCA), including dynamic vessel motion, for computational analysis to assess the effects of cardiac-induced motion on hemodynamics and resulting wall shear stress (WSS). Vascular geometries were acquired in the right coronary artery (RCA) of a healthy volunteer using a navigator-gated interleaved spiral sequence at 14 time points during the cardiac cycle. A high temporal resolution velocity waveform was also acquired in the proximal region. Cardiac-induced dynamic vessel motion was calculated by interpolating the geometries with an active contour model and a computational fluid dynamic (CFD) simulation with fully subject-specific information was carried out using this model. The results showed the expected variation of vessel radius and curvature throughout the cardiac cycle, and also revealed that dynamic motion of the right coronary artery consequent to cardiac motion had significant effects on instantaneous WSS and oscillatory shear index. Subject-specific MRI-based CFD is feasible and, if scan duration could be shortened, this method may have potential as a non-invasive tool to investigate the physiological and pathological role of hemodynamics in human coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Augst, A. D., B. Ariff, S. A. Thom, X. Y. Xu, and A. D. Hughes. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am. J. Physiol. Heart Circ. Physiol. 293:1031–1037, 2007.

    Article  Google Scholar 

  2. Barth, T. J., and D. C. Jesperson. The design and application of upwind schemes on unstructured meshes. AIAA paper 89-0366, 1989.

  3. Bi, X., J. Park, A. C. Larson, Q. Zhang, O. Simonetti, and D. Li. Contrast-enhanced 4D radial coronary artery imaging at 3.0T within a single breath-hold. Magn. Reson. Med. 54:470–475, 2005.

    Article  PubMed  Google Scholar 

  4. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma arterial wall shear—observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. In: Proceedings of the Royal Society London (Biology), 1971, pp. 109–159.

  5. Carsten, W., J. Schnorr, N. Kaufels, S. Wagner, H. Pilgrimm, B. Hamm, and M. Taupitz. Whole heart coronary magnetic resonance angiography: contrast enhanced time-resolved 3D imaging. Invest. Radiol. 42:550–557, 2007.

    Article  Google Scholar 

  6. Catmull, E., and R. Rom. A class of local interpolating splines. In: Computer Aided Geometric Design, edited by R. Barnhill and R. Reisenfeld. Academic Press, 1974.

  7. Cheruvu, P. K., V. A. Finn, C. Gardner, J. Caplan, J. Goldstein, G. W. Stone, R. Virmani, and J. E. Muller. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries. J. Am. Coll. Cardiol. 50:940–949, 2007.

    Article  PubMed  Google Scholar 

  8. Dempster, A. P., N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39:1–38, 1977.

    Google Scholar 

  9. DiMario, C., P. J. de Feyter, C. J. Slager, P. de Jaeger, J. R. Roelandt, and P. W. Serruys. Intracoronary blood flow velocity and trans-stenotic pressure gradient using sensor-tip pressure and Doppler guidewires: a new technology for the assessment of stenosis severity in the catheterisation laboratory. Cathet. Cardiovasc. Diagn. 28:311–319, 1993.

    Article  CAS  Google Scholar 

  10. Ding, Z., H. Zhu, and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 30:419–429, 2002.

    Article  PubMed  Google Scholar 

  11. Dodge, J. T., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246, 1992.

    PubMed  Google Scholar 

  12. Dowsey, A. W., J. Keegan, M. Lerotic, S. A. Thom, D. A. Firmin, and G. Z. Yang. Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement. Med. Image Anal. 11:478–491, 2007.

    Article  PubMed  Google Scholar 

  13. Fox, B., K. James, B. Morgan, and W. A. Seed. Distribution of fatty and fibrous plaques in young human coronary arteries. Atherosclerosis 41:337–347, 1982.

    Article  CAS  PubMed  Google Scholar 

  14. Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear dependent thickening of the human arterial intima. Atherosclerosis 60:161–171, 1986.

    Article  CAS  PubMed  Google Scholar 

  15. Ge, J., R. Erbel, T. Gerber, G. Görge, L. Koch, M. Haude, and J. Meyer. Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo. Heart 71:572–578, 1994.

    Article  CAS  Google Scholar 

  16. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. Trans. ASME J. Biomech. Eng. 118:74–82, 1996.

    Article  CAS  Google Scholar 

  17. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X.-M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Hort, W., H. Lichti, H. Kalbfleisch, F. Kohler, H. Frenzel, and U. Milzner-Schwarz. The size of human coronary arteries depending on the physiological and pathological growth of the heart the age, the size of the supplying areas and the degree of coronary sclerosis. A postmortem study. Virchows Archiv. 397:37–59, 1982.

    CAS  Google Scholar 

  19. Huo, Y., T. Wischgoll, and G. S. Kassab. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 293:H2959–H2970, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Hutchinson, B. R., P. F. Galpin, and G. D. Raithby. A multigrid method based on the additive correction strategy. Numer. Heart Transfer 9:511–537, 1986.

    Google Scholar 

  21. Jackson, J. I., C. H. Meyer, D. G. Nishimura, and A. Macovski. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 10:473–478, 1991.

    Article  CAS  PubMed  Google Scholar 

  22. Jackson, M. J., N. B. Wood, S. Z. Zhao, A. Augst, J. H. Wolfe, W. M. W. Gedroyc, A. D. Hughes, S. A. Thom, and X. Y. Xu. Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts. Artery Res. 2009 (in press). doi:10.1016/j.artres.2009.1001.1001.

  23. Jahnke, C., I. Paetsch, K. Nehrke, B. Schnackenburg, R. Gabker, E. Flecke, and E. Nagel. Rapid and complete coronary artery tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur. Heart J. 26:2313–2319, 2005.

    Article  PubMed  Google Scholar 

  24. Kass, M., A. Witkin, and D. Terzopoulos. Snakes: active contour models. Int. J. Comput. Vision 1:321–331, 1987.

    Article  Google Scholar 

  25. Keegan, J., P. D. Gatehouse, R. H. Mohiaddin, G. Z. Yang, and D. N. Firmin. Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and right coronary artery blood flow velocity. J. Magn. Reson. Imaging 19:40–49, 2004.

    Article  PubMed  Google Scholar 

  26. Keegan, J., P. D. Gatehouse, G. Z. Yang, and D. N. Firmin. Spiral phase velocity mapping of left and right coronary artery blood flow: correction for through-plane motion using selective fat-only excitation. J. Magn. Reson. Imaging 20:953–960, 2004.

    Article  PubMed  Google Scholar 

  27. Kleinstreuer, C., S. Hyun, J. R. J. Buchanan, P. W. Longest, J. P. J. Archie, and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.

    CAS  PubMed  Google Scholar 

  28. Kozerke, S., M. B. Scheidegger, E. M. Pedersen, and P. Boesiger. Heart motion adopted cine phase-contrast flow measurements throught the aortic valve. Magn. Reson. Med. 42:970–978, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    CAS  PubMed  Google Scholar 

  30. Lai, P., F. Huang, A. C. Laron, and D. Li. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J. Magn. Reson. Imaging 27:659–665, 2008.

    Article  PubMed  Google Scholar 

  31. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.

    Article  CAS  Google Scholar 

  32. Meyer, C. H., B. S. Hu, D. G. Nishimura, and A. Macovski. Fast spiral coronary artery imaging. Magn. Reson. Med. 28:202–213, 1992.

    Article  CAS  PubMed  Google Scholar 

  33. Moore, J. E., E. Weydahl, and A. Santamarina. Frequency dependence of dynamic curvature effects on flow through coronary arteries. Trans. ASME J. Biomech. Eng. 123:129–133, 2001.

    Article  Google Scholar 

  34. Nakatani, S., M. Yamagishi, J. Tamai, Y. Goto, T. Umeno, A. Kawaguchi, C. Yutani, and K. Miyatake. Coronary artery disease/interventions: assessment of coronary artery distensibility by intravascular ultrasound: application of simultaneous measurements of luminal area and pressure. Circulation 91:2904–2910, 1995.

    CAS  PubMed  Google Scholar 

  35. Olgac, U., D. Poulikakos, S. C. Saur, H. Alkandhi, and V. Kurtcuoglu. Patient-specific three-dimensional simulation of LDL accumulation in a human left coronary artery in its healthy and atherosclerotic states. Am. J. Physiol. Heart Circ. Physiol. 296:H1969–H1982, 2009.

    Article  CAS  PubMed  Google Scholar 

  36. Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.

    Article  CAS  PubMed  Google Scholar 

  37. Plein, S., T. R. Jones, J. P. Ridgway, and M. U. Siyananthan. Three-dimensional coronary MR angiography performed with subject-specific cardiac acquisition windows and motion-adapted respiratory gating. Am. J. Roentgenol. 180:505–512, 2003.

    Google Scholar 

  38. Prosi, M., K. Perktold, Z. Ding, and M. H. Friedman. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J. Biomech. 37:1767–1775, 2004.

    Article  PubMed  Google Scholar 

  39. Qiu, Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. Trans. ASME 122:77–85, 2000.

    Article  CAS  Google Scholar 

  40. Sakuma, H., Y. Ichikawa, S. Chino, T. HIrano, K. Makino, and K. Takeda. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J. Am. Coll. Cardiol. 48:1951–1952, 2006.

    Article  Google Scholar 

  41. Santamarina, A., E. Weydahl, J. M. Siegel, and J. E. Moore. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann. Biomed. Eng. 26:944–954, 1998.

    Article  CAS  PubMed  Google Scholar 

  42. Schaar, A. J., C. L. de Korte, F. Mastik, L. C. A. van Damme, R. Krams, P. W. Serruys, and A. F. W. van der Steen. Three-dimensional palpography of human coronary arteries. Herz 30:125–133, 2005.

    Article  PubMed  Google Scholar 

  43. Shechter, G., J. R. Resar, and E. R. McVeigh. Rest period duration of the coronary arteries: implications for magnetic resonance coronary angiography. Med. Phys. 32:255–262, 2005.

    Article  PubMed  Google Scholar 

  44. Slager, C. J., J. J. Wentzel, F. J. H. Gijsen, J. C. H. Schuurbiers, A. C. Van der Wal, A. F. W. Van der Steen, and P. W. Serruys. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med. 2:401–407, 2005.

    Article  CAS  PubMed  Google Scholar 

  45. Slager, C. J., J. J. Wentzel, F. J. H. Gijsen, A. Thury, A. C. van der Wal, J. A. Schaar, and P. W. Serruys. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med. 2:456–464, 2005.

    Article  CAS  PubMed  Google Scholar 

  46. Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. Francis, J. Mayet, G. Z. Yang, S. A. Thom, and X. Y. Xu. Stress phase-angle depicts differences in coronary artery hemodynamics due to changes in flow and geometry after percutaneous coronary intervention. Am. J. Physiol. Heart Circ. Physiol. 296:H765–H776, 2009.

    Article  CAS  PubMed  Google Scholar 

  47. Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. P. Francis, J. Mayet, G. Z. Yang, S. A. M. Thom, and X. Y. Xu. Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun. Numer. Methods Eng. 25:565–580, 2009.

    Article  Google Scholar 

  48. Wang, Y., E. VIdan, and G. W. Bergman. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758, 1999.

    CAS  PubMed  Google Scholar 

  49. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    CAS  PubMed  Google Scholar 

  50. Wu, Y. W., E. Tadamura, M. Yamamuro, S. Kanao, K. Nakayama, and K. Togashi. Evaluation of three-dimensional navigator-gated whole heart MR coronary angiography: the importance of systolic imaging in subjects with high heart rates. Eur. J. Radiol. 61:91–96, 2007.

    Article  PubMed  Google Scholar 

  51. Xu, C., and J. L. Prince. Snakes, shapes and gradient vector flow. IEEE Trans. Image Process. 7:359–369, 1998.

    Article  CAS  PubMed  Google Scholar 

  52. Zeng, D., E. Boutsianis, M. Ammann, K. Boomsma, S. Wildermuth, and D. Poulikakos. A study on the compliance of a right coronary artery and its impact on wall shear stress. Trans. ASME J. Biomech. Eng. 130:041014-1–041014-11, 2008.

    Google Scholar 

  53. Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31:420–429, 2003.

    Article  PubMed  Google Scholar 

  54. Zhu, H., and M. H. Friedman. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler. Thromb. Vasc. Biol. 23:2260–2265, 2003.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, H., J. J. Warner, T. R. Gehrig, and M. H. Friedman. Comparison of coronary artery dynamics pre- and post-stenting. J. Biomech. 36:689–697, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the British Heart Foundation (PG/04/078) and The Foundation for Circulatory Health (ICCH/07/5015), and the first author is currently supported by the Magdi Yacoub Institute. This project was supported by the NIHR Cardiovascular Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London. The authors are also grateful for support from the NIHR Biomedical Research Centre Funding Scheme awarded to Imperial College Healthcare NHS Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Torii.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Appendix

Appendix

The strain energy due to stretching and bending is

$$ U = \int\limits_{l} {\frac{1}{2}\left[ {EA\left( {{\frac{{\partial \user2{u}}}{\partial s}}} \right)^{2} + EI\left( {{\frac{{\partial^{2} \user2{v}}}{{\partial s^{2} }}}} \right)^{2} + U_{\text{ext}} (\user2{X})} \right]} ds , $$
(1)

where u and v are displacement vectors tangential and normal to the centerline, s is coordinate along the centerline, E is elastic modulus, A is cross-sectional area, and I is second moment of area. The Cartesian coordinate vector is defined as X. U ext is energy field in reference to image intensity that works as a source of external force attracting the centerline to that at the consecutive time point. It is given as

$$ U_{\text{ext}} (\user2{X}) = - \left| {\nabla G(I(\user2{X}))} \right|^{2} . $$
(2)

Here the energy U ext at spatial position X is defined as a square of the image intensity gradient. A unit image intensity U 0 is given along the “target” centerline, i.e., the centerline at the consecutive time-point, and the intensity field is smoothed by Gaussian filter function G. In the case shown in Fig. 5, the image intensity I(X) was set to 1.00 (=U 0) for the centerline at time 725 ms to which the centerline at time 600 ms was attracted. The constants in the equations were set based on approximate physiological values for coronary arteries; E = 1 MPa, A = 1.26 × 10−5 m2, I = 1.26 × 10−11 m4 assuming constant radius r = 0.002 m. It has been found that the results are insensitive to the actual values of these parameters. Displacement that minimizes U (Eq. 1) must satisfy the Euler equation

$$ EA{\frac{{\partial^{2} \user2{u}}}{{\partial s^{2} }}} - EI{\frac{{\partial^{4} \user2{u}}}{{\partial s^{4} }}} - \nabla U_{\text{ext}} (\user2{X}) = 0. $$
(3)

Equation (3) was solved as a time-dependent problem by firstly treating nodal coordinate x as a function of coordinate along the line and time, i.e., x (s, t), and then equating the temporal derivative of the nodal coordinate to Eq. (3) to give the following:

$$ {\frac{{\partial \user2{x}}}{\partial t}} = EA{\frac{{\partial^{2} \user2{u}}}{{\partial s^{2} }}} - EI{\frac{{\partial^{4} \user2{u}}}{{\partial s^{4} }}} - \nabla U_{\text{ext}} (\user2{X}), $$
(4)

where t is time. The first and second terms on the right hand side represent stretching and bending, respectively. Contribution of torsion is not taken into account in this study assuming that it is not as significant as stretching and bending. Motion of a reference point was controlled by Eq. (4) discretized in time:

$$ \user2{x}^{t + \Updelta t} = \user2{x}^{t} + \Updelta t\left[ {EA{\frac{{\partial^{2} \user2{u}}}{{\partial s^{2} }}} - EI{\frac{{\partial^{4} \user2{u}}}{{\partial s^{4} }}} - \nabla U_{\text{ext}} (\user2{X})} \right] $$

which allowed the reference points to be mapped onto the centerline at the next time point.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torii, R., Keegan, J., Wood, N.B. et al. MR Image-Based Geometric and Hemodynamic Investigation of the Right Coronary Artery with Dynamic Vessel Motion. Ann Biomed Eng 38, 2606–2620 (2010). https://doi.org/10.1007/s10439-010-0008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0008-4

Keywords

Navigation