Skip to main content
Log in

Fluid-structure Interaction within a Layered Aortic Arch Model

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The response of wall stress to the elasticity of each layer in the aorta wall was investigated to understand the role of the different elastic properties of layers in the aortic dissection. The complex mechanical interaction between blood flow and wall dynamics in a three-dimensional arch model of an aorta was studied by means of computational coupled fluid-structure interaction analysis. The results show that stresses in the media layer are highest in three layers and that shear stress is concentrated in the media layer near to the adventitia layer. Hence, the difference in the elastic properties of the layers could be responsible for the pathological state in which a tear splits across the tunica media to near to the tunica adventitia and the dissection spreads along the laminar planes of the media layer where it is near the adventitia layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thubrikar, M.J., Agali, P., Robicsek, F.: Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections. J. Med. Eng. Technol. 23, 127–134 (1999)

    Article  Google Scholar 

  2. Svensson, L.G., Grawford, E.S.: Aortic dissection and aortic aneurysm surgery: clinical observations, experimental investigations, and statistical analyses. Part II. Curr. Probl. Surg. 29, 913–1057 (1992)

    Google Scholar 

  3. Doroghazi, R.M., Slater, E.E.: Aortic Dissection, (p. 38.). McGraw-Hill, New York, NY (1983)

    Google Scholar 

  4. Roberts, W.C.: Aortic dissection: anatomy consequences and causes. Am. Heart J. 101, 195–214 (1981)

    Article  Google Scholar 

  5. Jamieson, W.R.E., Munro, A.I., Miyagishima, R.T., Allen, P., Tyers, G.F.O., Gerein, A.N.: Aortic dissection: early diagnosis and surgical management are the keys to survival. Can. J. Surg. 25, 145–149 (1982)

    Google Scholar 

  6. Desanctis, R.W., Doroghazi, R.M., Austen W.G., Buckley, M.J.: Aortic dissection. N. Engl. J. Med. 317, 1060–1067 (1987)

    Article  Google Scholar 

  7. Slater, E.E., Desanctis, R.W.: The clinical recognition of dissecting aortic aneurysm. Amer. J. Med. 60, 625–633 (1976)

    Article  Google Scholar 

  8. Tam, A.S.M., Sapp, M.C., Roach, M.R.: The effect of tear depth on the propagation of aortic dissections in isolated porcine thoracic aorta. J. Biomech. 31, 673–676 (1998)

    Article  Google Scholar 

  9. Yee, C.A.: Aortic dissection: the tear that kills. Nurs. Manage. 35, 25–32 (2004)

    Google Scholar 

  10. Di Martino, E.S., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P., Redaelli, A.: Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 23, 647–655 (2001)

    Article  Google Scholar 

  11. Giannakoulas, G., Giannoglou, G., Soulis, J., Farmakis, T., Papadopoulou, S., Parcharidis G., Louridas, G.: A computational model to predict aortic wall stresses in patients with systolic arterial hypertension. Med. Hypotheses 65(6), 1191–1195 (2005)

    Article  Google Scholar 

  12. MacLean, N.F., Dudek, N.L., Roach, M.R.: The role of radial elastic properties in the development of aortic dissections. J. Vasc. Surg. 29, 703–710 (1999)

    Article  Google Scholar 

  13. Humphrey, J.D.: Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)

    Google Scholar 

  14. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Engel, N.: Abdominal aortic aneurysm and low back pain. Dyn. Chiropr. 14(16) (1996)

  16. Ganong, W.F.: Review of Medical Physiology. Lange Medical, Los Altos, CA (1963)

    Google Scholar 

  17. Shiotani, S., Kohno, M., Ohashi, N., Yamazaki, K., Nakayama, H., Ito, Y., Kaga, K., Ebashi, T., Itai, Y.: Hyperattenuating aortic wall on postmortem computed tomography. Radiat. Med. 20(4), 201–206 (2002)

    Google Scholar 

  18. Riley, W.A., Barnes, R.W., Evans, G.W., Burke, G.L.: Ultrasonic measurements of the elastic modulus of the common carotid artery: the Atherosclerosis Risk in Communities (ARIC) Study. Stroke 23, 952–956 (1992)

    Google Scholar 

  19. Schulze-Bauer, C.A., Morth, C., Holzapfel, G.A.: Passive biaxial mechanical response of aged human iliac arteries. J. Biomech. Eng. 125(3), 395–406 (2003)

    Article  Google Scholar 

  20. Bloom W, Fawcett D.W.: A Textbook of Histology. 12th ed. Chapman & Hall, New York, NY (1994)

    Google Scholar 

  21. Driessen, N.J.B., Wilson, W., Bouten, C.V.C., Baaijens, F.P.T.: A computational model for collagen fibre remodeling in the arterial wall. J. Theor. Biol., 226, 53–64 (2004)

    Article  Google Scholar 

  22. Xie, J., Zhou, J., Fung, Y.C.: Bending of blood vessel wall: stress–strain laws of the intima-media and adventitial layers. J. Biomech. Eng. 117, 136–145 (1995)

    Google Scholar 

  23. Fischer, E.I., Armentano, R.L., Pessana, F.M., Graf, S., Romero, L., Christen, A.I., Simon, A., Levenson, J.: Endothelium-dependent arterial wall tone elasticity modulated by blood viscosity. Am. J. Physiol. Heart Circ. Physiol. 282, 389–394 (2002)

    Google Scholar 

  24. FIDAP Theory Manual, v.8.7.2, Fluent Inc., Lebanon, N.H. Apr. (2003)

  25. Liepsch, D., Moravec, S., Baumgart, R.: Some flow visualization and laser-doppler velocity measurements in a true-to-scale elastic model of a human aortic arch – a new model technique. Biorheology 29, 563–580 (1992)

    Google Scholar 

  26. Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113, 464–475 (1991)

    Google Scholar 

  27. Endo, S., Sohara, Y., Karino, T.: Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole. Heart Vessels 11, 180–191 (1996)

    Article  Google Scholar 

  28. Shahcheraghi, N., Dwyer, H.A., Cheer, A.Y., Barakat, A.I., Rutaganira, T.: Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J. Biomech. Eng. 124, 378–387 (2002)

    Article  Google Scholar 

  29. Moayeri, M.S., Zendehbudi, G.R.: Effect of elastic property of the wall on flow characteristics through arterial stenoses. J. Biomech. 36, 525–535 (2003)

    Article  Google Scholar 

  30. Torii, R., Oshima, M., Kobayashi, T., Takagi, K.: Influence of wall deformation on wall shear stress distribution of intracranial artery. In: Summer Bioengineering Conference, Sonesta Beach Resort, Key Biscayne, FL, 25–29 June 2003 (pp. 493–494)

  31. Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5, 293–302 (1985)

    Google Scholar 

  32. Moore, J.E., Xu, C., Glagov, S., Zarins, C.K., Ku, D.N.: Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110, 225–240 (1994)

    Article  Google Scholar 

  33. Angouras, D., Sokolis, D.P., Dosios, T., Kostomitsopoulos, N., Boudoulas, H., Skalkeas, G., Karayannacos, P.E.: Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection. Eur. J. Cardio-thorac. Surg. 17, 468–473 (2000)

    Article  Google Scholar 

  34. Okamoto, R.J., Xu, H.D., Kouchoukos, N.T., Moon, M.R., Sundt, T.M.: The influence of mechanical properties on wall stress and distensibility of the dilated ascending aorta. J. Thorac. Cardiovasc. Surg. 126, 842–850 (2003)

    Article  Google Scholar 

  35. Carsten, J.B., Michel, R.L., Mano, J.T., Gabor, S., Francis, R., Siegfried, H.: Increased aortic wall stress in aortic insufficiency: clinical data and computer model. Eur. J. Cardio-thorac. Surg. 27, 270–275 (2005)

    Article  Google Scholar 

  36. Nevitt, M.P., Ballard, D.J., Hallet, J.W.: Prognosis of abdominal aortic aneurysms: a population-based study. N. Engl. J. Med. 321, 1009–1014 (1989)

    Article  Google Scholar 

  37. McNamara, J.J., Pressler, V.: Natural history of atherosclerotic thoracic aortic aneurysms. Ann. Thorac. Surg. 26, 468–473 (1978)

    Article  Google Scholar 

  38. Michael, W.C., Margot, R.R.: The strength of the aortic media and its role in the propagation of aortic dissection. J. Biomech. 23, 579–588 (1990)

    Article  Google Scholar 

  39. Liepsch, D.: An introduction to biofluid mechanics – basic models and applications. J. Biomech. 35, 415–435 (2002)

    Article  Google Scholar 

  40. Hirst, A., Johns, V., Kime, W.: Dissecting aneurysms of the aorta: a review of 505 cases. Medicine 37, 217–279 (1958)

    Article  Google Scholar 

  41. Xie, L., Shih, H.J., Freedman, L.: Aortic dissection. Arch. Pathol. Lab. Med. 128, 599–600 (2004)

    Google Scholar 

  42. Vilacosta I., San Romàn J.A.: Acute aortic syndrome. Heart 85, 365–368 (2001)

    Article  Google Scholar 

  43. Uchida, K., Imoto, K., Takahashi, M., Suzuki, S., Isoda, S., Sugiyama, M., Kondo, J., Takanashi, Y.: Pathologic characteristics and surgical indications of superacute type A intramural hematoma. Ann. Thorac. Surg. 79, 1518–1521 (2005)

    Article  Google Scholar 

  44. Coady, M.A., Rizzo, J.A., Elefteriades, J.A.: Pathologic variants of thoracic aortic dissections. Penetrating atherosclerotic ulcers and intramural hematomas. Cardiol. Clin. 17, 637–657 (1999)

    Article  Google Scholar 

  45. Maltzahn, W.W.V., Warriyar, R.G., Keitzer, W.F.: Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17, 839–848 (1984)

    Article  Google Scholar 

  46. Macleod, R.I., Soames, J.V.: Intimal cushions in the lingual artery of neonates and children. Arch. Oral. Biol. 30, 745–747 (1985)

    Article  Google Scholar 

  47. Wheat, M.W.: Acute dissection of the aorta. Cardiovasc. Clin. 17, 241–262 (1987)

    Google Scholar 

  48. O’Gara, P.T., DeSanctis, R.W.: Acute aortic dissection and its variants: toward a common diagnostic and therapeutic approach. Circulation 92, 1376–1378 (1995)

    Google Scholar 

  49. Wolinsky, H., Glagov, S.: A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20, 409–421 (1967)

    Google Scholar 

  50. van Baardwijk, C., Roach, M.R.: Factors in the propagation of aortic dissections in canine thoracic aortas. J. Biomech. 20, 67–73 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Guo, Z., Sakamoto, M. et al. Fluid-structure Interaction within a Layered Aortic Arch Model. J Biol Phys 32, 435–454 (2006). https://doi.org/10.1007/s10867-006-9027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9027-7

Key words

Navigation