Skip to main content

Application of Microbiology in Dryland Agriculture

  • Chapter
  • First Online:
Innovations in Dryland Agriculture

Abstract

Microorganisms are key players in nutrient cycling and hence form important components of a soil ecosystem. Besides, improving nutrient availability, certain microorganisms also provide growth and health benefits to plants through direct and indirect mechanisms. Dryland soils are are poorly developed with low organic matter content and hence have poor water retention capacity. Besides, dryland soils face various abiotic stresses like nutrient imbalance, drought, heat etc. Application of organic based fertilizers improves the microbial populations and soil organic carbon. Cropping systems and residue management practices also influence microbial parameters in dryland soils. Increased abundance of microorganisms in dryland soil can help in improving soil aggregation and soil organic matter carbon content, thus increasing the water retention capacity of the soil. Besides, microbial inoculants with specific function such as nutrient solubilization and mobilization, plant growth promotion, disease control and abiotic stress management can be applied alone or in combination. Thus, the promotion of microbial-based technologies and/or the management practices that improve soil microbial parameters is important for the sustainability of dryland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Martínez V, Dowd SE, Bell CW, Lascano R, Booker JD, Zobeck TM, Upchurch DR (2010) Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil. Diversity 2:910–931

    Article  CAS  Google Scholar 

  • Acosta-Martínez V, Lascano R, Booker JD, Zobeck TM, Upchurch DR (2011) Dryland cropping systems influence microbial biomass and enzyme activities in a sandy soil in a semiarid region. Biol Fertil Soils 47:655–667

    Article  CAS  Google Scholar 

  • Ahmad MJ (2013) Cumulative effect of Rhizobium and phosphate solubilizing bacteria on yield, nutrient uptake and growth parameters in chickpea under rainfed conditions. PhD thesis, University of Agriculture, Faisalabad

    Google Scholar 

  • Ahmed ZI, Ansar M, Saleem A, Arif ZU, Javed HI, Saleem R (2012) Improvement of mash bean production under rainfed conditions by Rhizobium inoculation and low rates of starter nitrogen. Pak J Agric Res 25:154–160

    Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dryland. Trop Agric 69:347–350

    Google Scholar 

  • Alguacil MD, Kohler J, Caravaca F, Roldán A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58(4):942–951

    Article  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Rao LV, Kishore VN, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Appanna V (2007) Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Res J Microbiol 2:550–559

    Article  CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Ashraf M, Ahmad M, Bakush HM (2006) Efficacy of Rhizobium strains for groundnut inoculation under rainfed conditions. Pak J Agric Sci 43:3–4

    Google Scholar 

  • Astiko W, Sastrahidayat IR, Djauhari S, Muhibuddin A (2013) The role of indigenous mycorrhiza in combination with cattle manure in improving maize yield (Zea mays L.) on sandy loam of Northern Lombok, eastern of Indonesia. J Trop Soil 18(1):53–58

    Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1147

    Article  CAS  Google Scholar 

  • Benites J, Castellanos A (2003) Improving soil moisture with conservation agriculture. LEISA Magazine June 2003, 1–7

    Google Scholar 

  • Beshir HM, Walley FL, Bueckert R, Taran B (2015) Response of snap bean cultivars to Rhizobium inoculation under dryland agriculture in Ethiopia. Agronomy 5(3):291–308

    Article  Google Scholar 

  • Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of lran. J Biol Sci 8(6):1015–1020

    Article  CAS  Google Scholar 

  • Caesar-TonThat T, Lenssen AW, Caesar AJ, Sainju UM, Gaskin JF (2010) Effects of tillage on microbial populations associated to soil aggregation in dryland spring wheat system. Eur J Soil Biol 46:119–127

    Article  Google Scholar 

  • Carter MR (1986) Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res 7:29–40

    Article  Google Scholar 

  • Castiglioni P, Warner D, Benson RJ, Anstrom DC et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance to plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3(11):61–70

    CAS  Google Scholar 

  • Chen H, Hou R, Gong Y, Li H et al (2009) Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res 106:85–94

    Article  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley BH, Stutz JC, Moore LM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163(5):517–528

    Article  CAS  PubMed  Google Scholar 

  • Collins HP, Rasmussen PE, Douglas CL (1992) Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Sci Soc Am J 56:783–788

    Article  Google Scholar 

  • Depret G, Houot S, Allard MR, Breuil MC, Nouaïm R, Laguerre G (2004) Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations. FEMS Microbiol Ecol 51:87–97

    Article  CAS  PubMed  Google Scholar 

  • Desai S, Grover M, Leo Daniel AE, Praveen Kumar G, Mir Hassan AS (2012a) Exploiting plant growth promoting rhizomicroorganisms for enhanced crop productivity. In: Satyanarayana T, Johri BN, Prakash A (ed) Microorganisms in sustainable agriculture and biotechnology, pp 227–242

    Google Scholar 

  • Desai S, Praveen Kumar G, Sultana U, Pinnisetty S, Mir Hassan AS, Leo Daniel AE, Reddy G (2012b) Potential microbial candidate strains for management of nutrient requirements of crops. Afr J Microbiol Res 6:3924–3931

    CAS  Google Scholar 

  • Diáz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Article  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (ed), Methods for assessing soil quality. Soil Science Society of America, Madison, pp 247–271

    Google Scholar 

  • Dubey SK (1996) Response of soybean to rock phosphate applied with Pseudomonas striata in a typic chromustert. J Indian Soc Soil Sci 44(2):252–255

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45(6):563–571

    Article  Google Scholar 

  • Erman M, Demir S, Ocak E, Tufenk S, OÄŸuza F, Akkoprub A (2011) Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1–Yield, yield components, nodulation and AMF colonization. Field Crop Res 122:14–24

    Article  Google Scholar 

  • Faye A, Sarr A, Lesueur R (2006) Effect of inoculation with rhizobia on the gum-arabic production of 10-year-old Acacia senegal trees. Arid Land Res Manag 20:79–85

    Article  CAS  Google Scholar 

  • Figueiredo VB, Burity H, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Govaerts B, Mezzalama M, Sayre KD, Crossa J et al (2008) Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl Soil Ecol 38:197–210

    Article  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium, Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Grover M, Madhubala R, Ali Sk Z, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961

    Article  CAS  PubMed  Google Scholar 

  • Grover M, Maheswari M, Desai S, Gopinath KA, Venkateswarlu B (2015) Elevated CO2: plant associated microorganisms and carbon sequestration. Appl Soil Ecol 95:73–85

    Article  Google Scholar 

  • Hegde SV (1994) Population of cowpea rhizobia in farmersʼ fields in southern Karnataka: Influence of cropping systems, locations and N-levels. In: Rupela OP, Kumar Rao JVDK, Wani SP, Johansen C (eds) Proceedings of the workshop on linking biological nitrogen fixation research in Asia, Patancheru, Andhra Pradesh, India, pp. 47–55

    Google Scholar 

  • Helgason BL, Walley FL, Germida JJ (2009) Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Sci Soc Am J 73:120–127

    Article  CAS  Google Scholar 

  • http://www.fao.org/ag/ca/training_materials/cd27-english/fme/economic.pdf visited on 08.09.2015

  • http://www.geotexsupply.com/geotexsupply6 visited on 05.20.2016

  • Jin K, Sleutel S, Buchan D, De Neve S, Cai DX, Gabriels D, Jin JY (2009) Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil Tillage Res 104:115–120

    Article  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Khattak SG, Khan DF, Shah SH, Madani MS, Khan T (2006) Role of rhizobial inoculation in the production of chickpea crop. Soil Environ 25(2):143–145

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Leo Daniel AE, Praveen Kumar G, Desai S, Mir Hassan ASK (2011) In-vitro characterization of Trichoderma viride for abiotic stress tolerance and field evaluation against root rot disease in Vigna mungo L. J Biofertil Biopestici 2(3):1–5

    Google Scholar 

  • Lupwayi NZ, WA R, GW C (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. Adv Soil Sci 2:133–171

    Article  Google Scholar 

  • Maestre FT, Delgado-Baquerizo M, Jeffries TC et al (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci U S A 112:15684–15689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar D K (2011) Pulse crop production: principles and technologies. PHI Learning Pvt Ltd, New Delhi

    Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7(10):e48479. doi:10.1371/journal.pone.0048479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew RP, Feng Y, Githinji L, Ankumah R, KS B (2012) Impact of no-tillage and conventional tillage systems on soil microbial communities. App Environ Soil Sci. doi:10.1155/2012/548620

    Google Scholar 

  • Meriles JM, Gil SV, Conforto C et al (2009) Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res:271–281

    Google Scholar 

  • Minaxi, Saxena J (2010) Disease suppression and crop improvement in moong beans (Vigna radiata) through Pseudomonas and Burkholderia strains isolated from semiarid region of Rajasthan. BioControl 55(6):799–810

    Article  Google Scholar 

  • Minaxi NL, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semiarid deserts. Appl Soil Ecol 59:124–135

    Article  Google Scholar 

  • Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 13:3075–3084

    Article  CAS  Google Scholar 

  • Mishra PK, Bisht SC, Bisht JK, Bhatt JC (2012) Cold-tolerant PGPRs as bioinoculants for stress management. Bact Agrobiology: Stress Manag:95–118

    Google Scholar 

  • Mohammadi K, Nabiollahy K, Aghaalikhani M, Khormali F (2010) Study on the effect of different tillage methods on soil physical properties & yield and yield components of wheat cultivars. Iran J Plant Prod 16(4):77–91

    Google Scholar 

  • Mohammadi K, Heidari G, Khalesro S, Sohrabi Y (2011) Soil management, microorganisms and organic matter interactions: a review. Afr J Biotechnol 10(84):19840–19849

    CAS  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Water stress induced by polyethylene glycol 6000 and sodium chloride in two maize cultivars. Pak J Biol Sci 11(1):92–97

    Article  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Ng JP, Hollister EB, Gonzalez-Chavez MDCA, Hons FM, Zuberer DA, Aitkenhead-Peterson JA, Loeppert R, Gentry TJ (2012) Impacts of cropping systems and long-term tillage on soil microbial population levels and community composition in dryland agricultural setting. ISRN Ecol http://dx.doi.org/10.5402/2012/487370

  • Niranjan S, Shetty NP, Shetty HS (2004) Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. J Pest Manag 50:41–48

    Article  Google Scholar 

  • Nleya T, Walley F, Vandenberg A (2001) Response of four common bean cultivars to granular inoculant in a short-season dryland production system. Can J Plant Sci 81:385–390

    Article  Google Scholar 

  • Patil S (2014) Azosprillium based integrated nutrient management for conserving soil moisture and increasing sorghum productivity. Afr J Agric Res 9(23):1761–1769

    Article  Google Scholar 

  • Patra RK, Pant LM, Pradhan K (2012) Response of soybean to inoculation with rhizobial strains: effect on growth, yield, N uptake and soil N status. World J Agric Sci 8(1):51–54

    Google Scholar 

  • Piccinin GG, Dan LGM, Braccini ALE, Mariano DC et al (2011) Agronomic efficiency of Azospirillum brasilense in physiological parameters and yield components in wheat crop. J Agron 10:132–135

    Article  Google Scholar 

  • Praveen Kumar G, Kishore N, Leo Daniel AE, Sk MHA, Rasul A, Desai S (2012) Evaluation of fluorescent Pseudomonas spp. with single and multiple PGPR traits for plant growth promotion of sorghum in combination with AM fungi. Plant Growth Regul 67:133–140

    Article  CAS  Google Scholar 

  • Praveen Kumar G, Leo Daniel AE, Desai S, Sk MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol:Article ID 869697http://dx.doi.org/10.1155/2013/869697

  • Praveen Kumar G, Desai S, Leo Daniel AE, Pinisetty S (2015) Impact of seed bacterization with PGPR on growth and nutrient uptake in different cultivable varieties of green gram. Asian J Agric Res 9(3):113–122

    Article  Google Scholar 

  • Ramakrishnan K, Bhuvaneswari G (2014) Effect of inoculation of AM fungi and beneficial microorganisms on growth and nutrient uptake of Eleusine coracana (L.) Gaertn. (Finger millet). Internat Lett Nat Sci 8(2):59–69

    Article  Google Scholar 

  • Rasul A, Leo Daniel AE, Kumar GP, Grover M, Venkateswarlu B (2012) Characterization of Rhizobial isolates nodulating Millettia pinnata in India. FEMS Microbiol Lett 336(2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Reid A, Greene S (2012) How microbes can help feed the world. In: American Society for Microbiology (ed) A Report from the American Academy of Microbiology, p 36

    Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterraneansemi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation, comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. Front Microbiol. doi.org/10.3389/fmicb.2014.00103

    Google Scholar 

  • Sainju UM, Caesar-TonThat T, Lenssen AW, Evans RG, Kolberg R (2007) Long-term tillage and cropping sequence effects on dryland residue and soil carbon fractions. Soil Sci Soc Am J 71:1730–1739

    Article  CAS  Google Scholar 

  • Sainju UM, Lenssen AW, Caesar-TonThat T (2012) Tillage, crop rotation, and cultural practice effects on dryland soil carbon fractions. Open J Soil Sci 2:242–255

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswaralu B (2011) Drought–tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Sangwan PS, Suneja S, Kukreja K, Raj M (2011) Response of Azotobacter chroococcum in pearl millet under dryland farm conditions. Indian J Dryland Agric Res Develop 26:97–100

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Saxena AK, Shende R, Minakshi (2006) Interactions among beneficial microorganisms. In: Mukhergy KG, Manoharachary C, Singh J (eds) Soil biology vol. 7: microbial activity in the Rhizosphere. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schomberg HH, Jones OR (1999) Carbon and nitrogen conservation in dryland tillage and cropping systems. Soil Sci Soc Am J 63:1359–1366

    Article  CAS  Google Scholar 

  • Sharma N, Srivastava LL, Mishra B (1983) Studies on microbial changes in soil as a result of continuous application of fertilizers, farmyard manure and lime. J Indian Soc Soil Sci 31:202–206

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587 http://www.springerplus.com/content/2/1/587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrestha G, Vaidya SG, Rajbhandari BP (2009) Effects of arbuscular mycorrhiza in the productivity of maize and fingermillet relay cropping system. Nepal J Sci Technol 10:51–55

    Google Scholar 

  • Singh SR, Singh U, Singh JK (2009) Effect of bioinoculants and FYM on growth, yield and quality of soybean (Glycine max) under rainfed conditions of Kashmir valley. Ann Agric Res New Series 30:87–90

    Google Scholar 

  • Singh NK, Chaudhary FK, Patel DB (2013) Effectiveness of Azotobacter bioinoculant for wheat grown under dryland conditions. J Environ Biol 34:927–932

    CAS  PubMed  Google Scholar 

  • Soleymanifar A, Sidat SA (2011) Effect of inoculation with bio-fertilizer in different nitrogen levels on yield and yields components of safflower under dry land conditions. American-Eurasian J Agric Environ Sci 11(4):473–477

    Google Scholar 

  • Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, Mapelli F, Ouzari HI, Daffonchio D, Cherif A (2015) Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil. doi:10.1007/s11104-015-2650-y

    Google Scholar 

  • Spedding T, Hamel C, Mehuys G, Madramootoo C (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36:499–512

    Article  CAS  Google Scholar 

  • Srinivasarao C, Chary GR, Venkateswarlu B, Vittal K, Prasad JVNS, Kundu S, Singh SR, Gajanan GN, Sharma RA, Deshpande AN, Patel JJ, Balaguravaiah G (2009) Carbon sequestration strategies in rainfed production systems of India. Central Research Institute for Dryland Agriculture, Hyderabad

    Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Dinesh Babu M, Wani SP, Dixit S, Sahrawat KL, Kundu S (2011) Soil health improvement with Gliricidia green leaf manuring in rainfed agriculture, on farm experiences. Central Research Institute for Dryland Agriculture, Hyderabad

    Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Vittal KPR, Kundu S, Singh SR, Singh SP (2012) Long-term effects of soil fertility management on carbon sequestration in a rice–lentil cropping system of the Indo-Gangetic Plains. Soil Sci Soc Am J 76:168–178

    Article  CAS  Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S (2013) Sustainable management of soils of dryland ecosystems of India for enhancing agronomic productivity and sequestering carbon. Adv Agron 121:254–329

    Google Scholar 

  • Srinivasarao CH, Venkateswarl B, Lal R, Singh AK, Kundu S, Vittal KPR, Patel JJ, Patel MM (2014) Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western India. Land Degrad Dev 25:173–183

    Article  Google Scholar 

  • Srinivasarao Ch, Lal R, Prasad JVNS, Gopinath KA, Singh R, Jakkula VS, Sahrawat KL, Venkateswarlu B, Sikka AK, Virmani SM (2015) Potential and challenges of rainfed farming in India. In: Sparks DL (ed) Adv agron, Elsevier 133:113–181

  • Subba Rao MS (1986) Biofertilizers in agriculture. Oxford and IBM Publishing Co., New Delhi

    Google Scholar 

  • Subba Rao NS (1988) Rhizobium inoculant, 2nd edn. Oxford/IBH Publishing Co. Pvt. Ltd., New Delhi

    Google Scholar 

  • Sumarsih S, Haryanto D (2012) Pseudomonas fluorescens and Pseudomonas putida for promoting growth of Jatropha curcas seedling root. J Tropic Life Sci 2:53–57

    Article  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Res 77:43–49

    Article  Google Scholar 

  • Takate AS, Tatpurkar Sheetal R, Shelke SR, Bhanvase DB, Pawar AB, Kadam JR (2014) Rain-water conservation techniques with integrated phosphorus management on productivity of pigeonpea under dryland conditions. Indian J Dryland Agric Res Develop 29:79–84

    Article  Google Scholar 

  • Tilak KVBR (2000) Conservation and utilization of microbial diversity for natural resource management. In: Yadav, JSP et al (eds) International conference on managing natural resources for sustainable agricultural production in the 21st century. New Delhi, pp 76–78

    Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thalianan gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Tiwari M, Parada S, Dadarwal KR (2003) Associative diazotrophs of pearl millet (Pennisetum glaucum) from semi arid region – isolation and characterization. Indian J Exp Biol 41:341–345

    PubMed  Google Scholar 

  • Tripathi PK, Singh MK, Singh JP, Singh ON (2012) Effect of rhizobial strains and sulphur nutrition on mungbean (Vigna radiata (L.) wilczek) cultivars under dryland agro–ecosystem of Indo–Gangetic plain. Afr J Agric Res 7(1):34–42

    Google Scholar 

  • Venkataraman GS, Tilak KVBR (1990) Biofertilizers in sustainable agriculture. In: Kumar V, GC h, SV K (eds) Soil fertility and fertilizers. Vol. IV, nutrient management and supply system for sustainable agriculture in 1990s. Indian Farmers Fertilizers Cooperative Ltd, New Delhi

    Google Scholar 

  • Venkateswarlu B (1985) Association of Azospirillum species with roots of pearl millet, Ph.D thesis. University of Jodhpur, Jodhpur

    Google Scholar 

  • Venkateswarlu B (1992) Performance of biofertilizers in dryland agriculture – a critical review and future research needs. Indian J Dryland Agril Res Dev 7(2):124–132

    Google Scholar 

  • Venkateswarlu B, Srinivasarao Ch (2005) Soil microbial diversity and the impact of agricultural practices. ENVIS Centre Microorganisms and Environment Management Newsletter Vol 3 http://www.envismadrasuniv.org/oct_news.htm

  • Venkateswarlu B, Srinivasarao C, Ramesh G, Vekateswarlu S, Katyal JC (2007) Effects of long-term legume cover crop incorporation on soil organic carbon, microbial biomass, nutrient build-up and grain yields of sorghum/sunflower under rain-fed conditions. Soil Use Manag 23:100–107

    Article  Google Scholar 

  • Venkateswarlu B, Desai S, Prasad YG (2008) Agriculturally important microorganisms for stressed ecosystems: Challenges in technology development and application. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 1. Academic World, Bhopal

    Google Scholar 

  • Wani SP, Sreedevi TK, Rockström J, Ramakrishna YS (2009) Rain-fed agriculture-Past trend and future prospects. In: Wani SP, Rockström J, Oweis T (eds) Rain-fed agriculture: unlocking the potential, Comprehensive assessment of water management in agriculture series. CAB International, Wallingford

    Chapter  Google Scholar 

  • Woodard H, Bly A (2000) Maize growth and yield responses to seed-inoculated N2-fixing bacteria under dryland production conditions. J Plant Nutr 23:55–65

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of phosphate solubilizing microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). Proc World Acad Sci Eng Technol 37:90–92

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Arshad M, Shaharoona B (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 3(4):968–989

    Google Scholar 

  • Zhang B, Chang SX, Anyia AO (2015) Mycorrhizal inoculation and nitrogen fertilization affect the physiology and growth of spring wheat under two contrasting water regimes. Plant Soil. doi:10.1007/s11104–015–2635–x

    Google Scholar 

  • Zhu Y, Wang Z, Wang J, Wang Z, Zhou J (2014) Plant growth-promoting rhizobacteria improve shoot morphology and photosynthesis in dryland spring wheat. In: Lee G (ed) Biomedical engineering and environmental engineering. Information Engineering Research Institute, Texas City

    Google Scholar 

Download references

Acknowledgements

The authors of this manuscript are thankful to Indian Council of Agricultural Research for providing support under AMAAS (Application of Microorganisms in Agriculture and Allied Sectors) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Grover, M., Venkateswarlu, B., Desai, S., Gopinath, K.A., Srinivasa Rao, C. (2016). Application of Microbiology in Dryland Agriculture. In: Farooq, M., Siddique, K. (eds) Innovations in Dryland Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-47928-6_18

Download citation

Publish with us

Policies and ethics