Skip to main content

Advertisement

Log in

Soil microbes and the availability of soil nutrients

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

It is likely to provide plants with their necessary nutrients using chemical and biological fertilization. Although chemical fertilization is a quick method, it is not recommendable economically and environmentally, especially if overused. Biological fertilization is the use of soil microbes including arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria to inoculate plants. It has been proved that biological fertilization is an efficient method to supply plants with their necessary nutrients. It is economically and environmentally recommendable, because it results in sustainability. In this article, some of the most important details including the mechanisms and processes regarding the effects of soil microbes on the availability and hence uptake of nutrients by plant are reviewed. Such details can be important for the selection and hence production of microbial inoculums, which are appropriate for biological fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas-Zadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati A, Miransari M (2010) Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiol Plant 32:281–288

    Article  Google Scholar 

  • Adesemoye A, Kloepper J (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  PubMed  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  PubMed  CAS  Google Scholar 

  • Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488

    Article  PubMed  CAS  Google Scholar 

  • Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837

    Article  PubMed  CAS  Google Scholar 

  • Blaise D, Singh JV, Bonde AN, Tekale KU, Mayee CD (2005) Effects of farmyard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton (Gossypium hirsutum). Bioresour Technol 96:345–349

    Article  PubMed  CAS  Google Scholar 

  • Borch K, Bouma T, Lynch J, Brown K (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Chen L, Dick W, Streeter J, Hoitink H (1998) Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant Soil 200:139–147

    Article  CAS  Google Scholar 

  • Chen B, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Divya B, Kumar M (2011) Plant–microbe interaction with enhanced bioremediation. Res J Biotechnol 6:72–79

    CAS  Google Scholar 

  • Dutta S, Podile A (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    Article  PubMed  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Fang C, Smith P, Smith JU, Moncrieff JB (2005) Incorporating microorganisms as decomposers into models to simulate soil organic matter decomposition. Geoderma 129:139–146

    Article  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev 25:1–5

    Article  Google Scholar 

  • Ghiorse WC (1988) The biology of manganese transforming microorganisms in soils. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 75–85

    Chapter  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • He C, Tan GE, Liang X, Du W, Chen TL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • Hernandez M, Kappler A, Newman D (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Gobran G, Gregory P, Wenzel W (2005) Rhizosphere geometry and heterogeneity arising from root mediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Tétu T, Lea P, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485

    Article  CAS  Google Scholar 

  • Hodge A (2010) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany 71. Springer, Berlin, pp 307–337

    Google Scholar 

  • Houser J, Richardson W (2010) Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia 640:71–88

    Article  CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Iimura Y, Ikeda S, Sonoki T et al (2002) Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Appl Microbiol Biotechnol 59:246–251

    Article  PubMed  CAS  Google Scholar 

  • Iqbal U, Jamil N, Ali I, Hasnain S (2010) Effect of zinc-phosphate-solubilizing bacterial isolates on growth of vigna radiate. Ann Microbiol 60:243–248

    Article  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  PubMed  CAS  Google Scholar 

  • Jin CW, Li GX, Yu XH, Zheng SJ (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841

    Article  PubMed  CAS  Google Scholar 

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152

    Article  CAS  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci 107:2093–2098

    Article  PubMed  CAS  Google Scholar 

  • Jones D, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Knauff U, Schulz M, Scherer H (2003) Arylsufatase activity in the rhizosphere and roots of different crop species. Eur J Agron 19:215–223

    Article  CAS  Google Scholar 

  • Lamont BB (2003) Structure, ecology and physiology of root clusters—a review. Plant Soil 248:1–19

    Article  CAS  Google Scholar 

  • Li X, Wu Z, Li W, Yan R, Li L, Li J, Li Y, Li M (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Makoi JH, Ndakidemi PA (2007) Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotechnol 6:1358–1368

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marschner P, Rengel Z (2007) Contributions of rhizosphere interactions to soil. In: Abbott LK, Murphy DV (eds) Soil biological fertility—a key to sustainable land use in agriculture. Kluwer Academic Publishers, Dordrecht, pp 81–98

    Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis—model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider J, Piceno Y, DeSantis T, Andersen G, Bakker P, Raaijmakers J (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Meyer B, Imhoff J, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    PubMed  CAS  Google Scholar 

  • Miransari M (2011a) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011b) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011c) Soil microbes and plant fertilization. Review article. Appl Microbiol Biotechnol 92:875–885

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011d) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  PubMed  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011a) Development of a soil N test for fertilizer requirements for corn production in Quebec. Commun Soil Sci Plant Anal 42:50–65

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011b) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr 34:762–777

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Smith D (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Article  Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)—Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    Article  CAS  Google Scholar 

  • Miransari M, Balakrishnan P, Smith DL, Mackenzie AF, Bahrami HA, Malakouti MJ, Rejali F (2006) Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosaccahrides. Commun Soil Sci Plant Anal 37:1103–1110

    Article  CAS  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res 104:48–55

    Article  Google Scholar 

  • Niu S, Wu M, Han YI, Xia J, Zhang Z, Yang H, Wan S (2010) Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Glob Change Biol 16:144–155

    Article  Google Scholar 

  • Oller ALW, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Over expression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Article  Google Scholar 

  • Podile A, Kishore G (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Pongrac P, Vogel-Mikuš K, Kump P, Necemer M, Tolrà R, Poschenrieder C, Barceló J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z (1997) Root exudation and microflora populations in rhizosphere of crop genotypes differing in tolerance to micronutrient deficiency. Plant Soil 196:255–260

    Article  CAS  Google Scholar 

  • Rengel Z (1999) Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. In: Rengel Z (ed) Mineral nutrition of crops: mechanisms and implications. The Haworth Press, New York, pp 227–265

    Google Scholar 

  • Rengel Z, Gutteridge R, Hirsch P, Hornby D (1996) Plant genotype, micronutrient fertilisation and take-all infection influence bacterial populations in the rhizosphere of wheat. Plant Soil 183:269–277

    Article  CAS  Google Scholar 

  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Romheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Adv Plant Nutr 2:155–204

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:LSMR-21

  • Sajedi N, Ardakani M, Rejali F, Mohabbati F, Miransari M (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351

    Article  PubMed  CAS  Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4:330–334

    CAS  Google Scholar 

  • Saxena AK, Tilak KVBR (1998) Free-living nitrogen fixers: its role in crop production. In: Verma AK (ed) Microbes for health, wealth and sustainable environment. Malhotra Publ Co, New Delhi, pp 25–64

    Google Scholar 

  • Shane M, Lambers H (2005) Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plant 124:441–450

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y, Iimura Y (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotechnol 67:138–142

    Article  PubMed  CAS  Google Scholar 

  • Timonin MI (1946) Microflora of the rhizosphere in relation to the manganese-deficiency disease of oats. Soil Sci Soc Am Proc 11:284–292

    Article  Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Frey-klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  PubMed  CAS  Google Scholar 

  • Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K-I, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  PubMed  Google Scholar 

  • Van der Heijden MG (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171

    Article  PubMed  Google Scholar 

  • van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2010) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Yang C, Crowley D (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Zabihi H, Savaghebi G, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152

    Article  Google Scholar 

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium-solubilizing ability of Bacillus Circulans Z 1-3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim M, Dowd S, Pare P (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  PubMed  CAS  Google Scholar 

  • Zhao J-L, Zhou L-G, Wu J-Y (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide-protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The great comments of the respectful editors and reviewers are appreciated. My apology to the colleagues whose work was not cited due to the space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Miransari.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miransari, M. Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35, 3075–3084 (2013). https://doi.org/10.1007/s11738-013-1338-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1338-2

Keywords

Navigation