Skip to main content

Alkaliphiles and Acidophiles in Nanotechnology

  • Chapter
  • First Online:
Extremophiles: Applications in Nanotechnology

Abstract

Acidophiles and alkaliphiles have been exploited for the synthesis of nanoparticles. The nanomaterial synthesizing biocomponents of these microorganisms have an added advantage of providing excellent stability to the nanomaterial being synthesized. Some produce biomolecules such as proteins, peptides and a special class of metal-binding molecules referred to as phytochelatins that are used for the in vitro stabilization of synthesized nanomaterials. This chapter provides an overview of the many acidophilic and alkalophilic microorganisms capable of synthesizing nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed EA, Abdel Hafez EH, Ismail AFM, Elsonbaty SM, Abbas HS, Salah El Din RA (2015) Biosynthesis of silver nanoparticles by Spirulina platensis and Nostoc sp. Global Adv Res J Microbiol. 4:36–49

    Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc. 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Anasane N, Golinska P, Wypij M, Rathod D, Dahm H, Rai M (2016) Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans. Mycoses 59:157–166

    Article  CAS  PubMed  Google Scholar 

  • Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  • Bâati LL, Fabre-Gea C, Auriol D, Blanc PJ (2000) Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels. Int J Food Microbiol 59:241–247

    Article  PubMed  Google Scholar 

  • Bai H, Zhang Z, Guo Y, Jia W (2009) Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides” Nanoscale Res Lett 4:717–723

    Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963

    Article  CAS  PubMed  Google Scholar 

  • Barbara DJ, Clewes E (2003) Plant pathogenic Verticillium species: how many of them are there? Mol Plant Pathol. 4:297–305

    Article  CAS  PubMed  Google Scholar 

  • Baskar G, Vasanthi BP, Kumar MV, Dilliganesh T (2014) Characterization of intracellular gold nanoparticles synthesized by biomass of Aspergillus terreus. Acta Metall Sin 27:569–572

    Article  CAS  Google Scholar 

  • Basta T, Prangishvili D (2007) Nanobiotechnological potential of viruses of hyperthermophilic archaea. In: Robb F, Antranikian G, Grogan D, Driessen A (eds) Thermophiles: biology and technology at high temperature. CRC Press, Boca Raton, pp 225–235

    Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll Surf B. 47:160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Deshpande R, Ganachari SV, Huh DS, Venkataraman A (2011) Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg Chem Appl. Article ID 650979, 7 p

    Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  PubMed  Google Scholar 

  • Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physico-cultural conditions. Sci World J. 2013, Article ID 796018, 12 p

    Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68

    CAS  Google Scholar 

  • Bull AT (2010) Actinobacteria from the extremobiosphere. In: Horikoshi K, Antranikian G, Bull AT, Robb F, Stetter KO (eds) Extremophiles handbook. Springer, New York, pp 3–15

    Google Scholar 

  • Chang SS, Kang DH (2004) Alicyclobacillus spp. in the fruit juice industry: history, characteristics, and current isolation/detection procedures. Crit Rev Microbiol 30:55–74

    Article  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creamer N, Mikheenko I, Yong P, Deplanche K, Sanyahumbi D, Wood J, Pollmann K, Merroun M, Selenska-Pobell S, Macaskie LE (2007) Novel supported Pd hydrogenation bionanocatalyst for hybrid homo-geneous/heterogeneous catalysis. Catal Today 128:80–87

    Article  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Das BK, Roy A, Singh S, Bhattacharya J (2009) Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Rev Environ Sci Biotechnol 8:257–274

    Article  CAS  Google Scholar 

  • Dehnad A, Hamedi J, Derakhshan-Khadivi F, Abusov R (2015) Green synthesis of gold nanoparticles by a metal resistant isolated from gold mine. IEEE Trans Nanobiosci 4:393–396

    Article  Google Scholar 

  • Dhandhukia PC, Patel M, Thakker JN (2012) Biosynthesis of silver nanoparticles using a plant pathogenic fungus, Fusarium oxysporum F. sp. Cubense. J Pure and Appl Sci. 20:10–14

    Google Scholar 

  • Dhanjal S, Cameotra SS (2011) Selenite stress elicits physiological adaptations in Bacillus sp. (strain JS-2). J Microbiol Biotechnol 21:1184–1192

    Article  CAS  PubMed  Google Scholar 

  • Dias MA, Lacerda ICA, Pimentel PF, de Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50

    Article  CAS  PubMed  Google Scholar 

  • Dillon JC, Phuc AP, Dubacq JP (1995) Nutritional value of the alga Spirulina. World Rev Nutr Diet 77:32–46

    Article  CAS  PubMed  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng 96:1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at iron mountain, California. Geochem Trans. 5:13–32

    Article  CAS  PubMed Central  Google Scholar 

  • Duan D, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GHI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  • Durán N, Marcato PD, De Souza G, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3: 203–208

    Google Scholar 

  • Elcey CD, Kuruvilla AT, Thomas D (2014) Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites. Int J Curr Microbiol App Sci. 3:408–417

    CAS  Google Scholar 

  • El-Raheem AR, El-Shanshoury S, Elsilk E, Ebeid ME (2012) Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Lactobacillus acidophilus DSMZ 20079T. African J Biotechnol. 11:7957–7965

    Google Scholar 

  • Enami I, Adachi H, Shen JR (2010) Mechanisms of acido-tolerance and characteristics of photosystems in an acidophilic and thermophilic red alga, Cyanidium caldarium. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 373–389

    Chapter  Google Scholar 

  • Engelhardt H (2007) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:115–124

    Article  CAS  PubMed  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica F. 20:1055–1058

    Google Scholar 

  • Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Ferris MJ, Sheehan KB, Kühl M, Cooksey K, Wigglesworth-Cooksey B, Harvey R, Henson JM (2005) Algal species and light microenvironments in a low-pH, geothermal microbial mat community. Appl Environ Microbiol 71:7164–7171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gekeler W, Grill E, Winnacker E, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arc Microbiol. 159:197–202

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull. 39:22–28

    Article  CAS  Google Scholar 

  • Ghai R, McMahon KD, Rodriguez-Valera F (2012) Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep. 4:29–35

    Article  CAS  PubMed  Google Scholar 

  • Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, Souza de Oliveira TC, Garcia JW, Pellon de Miranda F, Henrique-Silva F (2011) Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE 6(8):e23785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin -gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679

    Article  CAS  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006

    Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Golinska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M (2015) Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol 55:1–16

    Article  Google Scholar 

  • Goodfellow M, Dawson D (1978) Qualitative and quantitative studies of bacteria colonizing Picea sitchensis litter. Soil Biol Biochem 10:303–307

    Article  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Hallberg KB, Lindström EB (1994) Characterization of Thiobacillus caldus, sp. nov., a moderately thermophilic acidophile. Microbiol. 140:3451–3456

    Article  CAS  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson KB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hayward D, van Helden PD, Wiid IJ (2009) Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evol Biol 9:48. doi:10.1186/1471-2148-9-48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He ZG, Zhong H, Li Y (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48:159–163

    Article  CAS  PubMed  Google Scholar 

  • Hemath NKS, Kumar G, Karthik L, Bhaskara Rao KV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167

    CAS  Google Scholar 

  • Hoover RB, Pikuta EV, Bej AK, Marsic D, Whitman WB, Tang J, Krader P (2003) Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821

    Article  CAS  PubMed  Google Scholar 

  • Honary S, Barabadi H, Gharael-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium wasksmanii. Digest J Nano Biostruc. 7:999–1005

    Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013) Green Synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical J Pharmaceut Res 12:7–11

    CAS  Google Scholar 

  • Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 23–51

    Chapter  Google Scholar 

  • Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci. 4:225–231

    Article  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical, and biological methods. Res Pharmaceut Sci 9:385–406

    CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Coll Surf B 81:430–433

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  PubMed  Google Scholar 

  • Kalabegishvili T, Murusidze I, Kirkesali E, Rcheulishvili A, Ginturi E, Kuchava N, Bagdavadze N, Gelagutashvili E, Frontasyeva MV, Zinicovscaia I, Pavlov SS, Dmitriev AY (2013a) Gold and silver nanoparticles in Spirulina platensis: biomass for medical application. Ecol Chem Eng S 20:621–631

    CAS  Google Scholar 

  • Kalabegishvili TL, Kirkesali E, Ginturi E, Rcheulishvili A, Murusidze I, Pataraya D, Gurielidze M, Bagdavadze N, Kuchava N, Gvarjaladze D, Lomidze L (2013b) Synthesis of gold nanoparticles by new strains of thermophilic actinomycetes. Nano Stud 7:255–260

    Google Scholar 

  • Kalabegishvili TL, Murusidze IG, Prangishvili DA, Kvachadze L, Kirkesali E, Rcheulishvili A, Ginturi E, Janjalia MB, Tsertsvadze G, Gabunia VM, Frontasyeva MV, Zinicovscaia I, Pavlov SS (2014) Gold nanoparticles in Sulfolobus islandicus Biomass for technological applications. Adv Sci Eng Med 6:1302–1308

    Google Scholar 

  • Kalabegishvili TL, Murusidze IG, Prangishvili DA, Kvachadze L, Kirkesali E, Rcheulishvili A, Ginturi E, Janjalia MB, Tsertsvadze G, Gabunia VM, Frontasyeva MV, Zinicovscaia I, Pavlov SS (2015) Silver nanoparticles in Sulfolobus islandicus biomass for technological applications. Adv Sci Eng Med 7:797–804

    Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kannan M, Uma Sangareswari K, Suganya P, Ganesan R, Rajarathinam K (2015) Biobased approach for the synthesis, characterization, optimization and application of silica nanoparticles by fungus Fusarium oxysporum. Pharmaceut. Biol Eval 2:223–233

    Google Scholar 

  • Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles-Taxonomy, diversity, physiology, and applications. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 1–34

    Google Scholar 

  • Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KVB (2013) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioproc Biosyst Eng. 37:261–267

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Coll Surf B 7:133–137

    Article  CAS  Google Scholar 

  • Khan MR, Williams ST (1975) Studies on the ecology of actinomycetes in soil. VIII. Description and characteristics of acidophilic actinomycetes. Soil Biol Biochem 7:345–348

    Article  Google Scholar 

  • Kim CJ, Jung YH, Oh HM (2007) Factors indicating culture status during cultivation of Spirulina (Arthrospira) platensis. J Microbiol 45:122–127

    CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford, p 724

    Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König H, Rachel R, Claus H (2007) Proteinaceous surface layers of archaea. In: Cavicchioli R (ed) Archaea: Molecular and cellular biology. ASM Press, Herndon, pp 315–353

    Chapter  Google Scholar 

  • Konings WN, Albers SV, Koning S, Driessen AJ (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81:61–72

    Article  CAS  PubMed  Google Scholar 

  • Korbekandi H, Iravani S (2013) Biological synthesis of nanoparticles using algae. In: Rai M, Posten C (eds) Green Biosynthesis of nanoparticles: mechanisms and applications. CABI, Wallingford, pp 53–60

    Chapter  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87:932–937

    Article  CAS  Google Scholar 

  • Korbekandi H, Ashari Z, Iravani S, Abbasi S (2013) Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum. Iran J Pharm Res. 12:289–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SA, Ayoobul AA, Absar A, Khan MI (2007) Extracellular biosynthesis of cdse quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Bioenergy 2:1–24

    Article  CAS  Google Scholar 

  • Kumar RR, Priyadharsani PK, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamari. J Nanoparticle Res. 14:860–868

    Article  CAS  Google Scholar 

  • Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B, Vanncanneyt M, Swings J, Kim SB, Liu Z, Chun J, Tamura T, Oguchi A, Kikuchi T, Kikuchi H, Nishii T, Tsuji K, Yamaguchi Y, Tase A, Takahashi M, Sakane T, Suzuki KI, Hatano K (2012) A phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104

    Article  CAS  PubMed  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-Mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Xue Y, Grant WD, Collins NC, Duckworth AW, Steenbergen RP, Jones BE (2004) Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8:193–200

    Article  CAS  PubMed  Google Scholar 

  • Macalady J, Banfield JF (2003) Molecular geomicrobiology: genes and geochemical cycling. Earth Planet Sci Lett. 209:1–17

    Article  CAS  Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using Ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci. 25:989–1004

    Article  CAS  Google Scholar 

  • Mark SS, Bergkvist M, Yang X, Teixeira LM, Bhatnagar P, Angert ER, Batt CA (2006) Bionano-fabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries. Langmuir 22:3763–3774

    Article  CAS  PubMed  Google Scholar 

  • Martell AE, Smith RM (1974) Critical stability constants, vol I. Plenum Press, New York 469 p

    Google Scholar 

  • Matin A (1990) Keeping a neutral cytoplasm: the bioenergetics of obligate acidophiles. FEMS Microbiol Rev 75:307–318

    Article  CAS  Google Scholar 

  • Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophiles adapts to multiple environmental extremes using a large repertoire of Na+ (K+)/H+ antiporters. Mol Microbiol 74:270–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesbah NM, Wiegel J (2011) The Na+-translocating F1FO-ATPase from the halophilic, alkalithermophile Natranaerobius thermophiles. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 1807:1133–1142

    Google Scholar 

  • Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel net -works as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polym. 48:158–164

    Article  CAS  Google Scholar 

  • Mohanta YK, Behera SK (2014) Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioproc Biosyst Eng. 37:2263–2269

    Article  CAS  Google Scholar 

  • Moharrer S, Mohammadi B, Gharamohammadi RA, Yargoli M (2012) Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian J Sci Technol. 5:2443–2444

    CAS  Google Scholar 

  • Mousavi R A, Sepahy AA, Fazeli MR (2012) Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using Enterobacteriaceae and their application, Scientific Research Publication, 2012. [Online]. Available: http://www.oalib.com/paper/2377076#.VEQcDhZQCMA

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal DI, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Nadeau OW, Gump DW, Hendricks GM, Meyer DH (1992) Deposition of bismuth by Yersinia enterocolitica. Med Microbiol Immunol 181:145–152

    Article  CAS  PubMed  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus Strains. Crystal Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nakajima A (2003) Accumulation of gold by microorganisms. World J Microbiol Biotechnol 19:369–374

    Article  CAS  Google Scholar 

  • Namasivayam SKR, Kumar G, Reepika R (2010) Synthesis of silver nanoparticles by Lactobacillus acidophilus 01 strain and evaluation of its in vitro genomic DNA toxicity. Nano-Micro Lett 2:160–163

    Article  Google Scholar 

  • Navazi ZR, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigatus. Iran J Biotechnol. 8:56–61

    CAS  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2010) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF, the process and optimization. J Nanoparticle Res 13:3129–3137

    Article  CAS  Google Scholar 

  • Nayak R, Pradhan N, Behera D, Pradhan K, Mishra S, Sukla L, Mishra B (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanoparticle Res. 13: 3129–3137

    Google Scholar 

  • Noorbatcha IA, Salleh MH (2014) Biological synthesis of zinc nanoparticles by Aspergillus niger. J Pure Appl Microbiol 8:865–869

    Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem 110:16248–16253

    Article  CAS  Google Scholar 

  • Pavani PV, Balakrishna K, Cheemarla NK (2011) Biosynthesis of zinc nanoparticles by Aspergillus species. Int J Nanotechnol Appl. 5:27–36

    Google Scholar 

  • Pavani KV, Kumar NS, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol. 61:61–63

    CAS  PubMed  Google Scholar 

  • Pavani KV, Srujana N, Preethi G, Swati T (2013) Synthesis of copper nanoparticles by Aspergillus species. Lett Appl Nanosci 2:110–113

    Google Scholar 

  • Phanjom P, Ahmed G (2015) Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and Its characterizations. Nanosci Nanotech 5:14–21

    CAS  Google Scholar 

  • Pomaranski E, Tiquia-Arashiro SM (2016) Butanol tolerance of carboxydotrophic bacteria isolated from manure composts. Environ Technol 37:1970–1982

    Google Scholar 

  • Pum D, Sara M, Sleytr UB (1989) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E38–66. J Bacteriol 171:5296–5303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Railean-Plugaru V, Pomastowski P, Wypij M, Szultka-Mlynska M, Rafinska K, Golinska P, Dahm H, Buszewski B (2016) Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. J Appl Microbiol. doi:10.1111/jam.13093 (update later) search

  • Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 93:3–10

    Google Scholar 

  • Rajasekharreddy P, Rani PU, Sreedhar B (2010) Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanopart Res 12:1711–1721

    Article  CAS  Google Scholar 

  • Rajasree R, Gayathri S (2015) Extracellular biosynthesis of selenium nanoparticles using some species of Lactobacillus. Indian J Geo-Marine Sci 43(5)

    Google Scholar 

  • Rajesh S, Dharanishanthi V, Vinoth Kanna A (2015) Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. J Experiment Nanosci. 10:1143–1152

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Choudhary K, Mal P, Raturi A, Gautam R, Singh SK (2014) Synthesis of MgO nanoparticles using Aspergillus tubingensis TFR-3. J Bionanosci 8:34–38

    Article  CAS  Google Scholar 

  • Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of metal carbonate minerals using fungi and actinomycetes. Langmuir 14:2333–2340

    CAS  Google Scholar 

  • Reeb V, Bhattacharya D (2010) The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 409–426

    Chapter  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sadowski Z (2010) Biosynthesis and Application of Silver and Gold Nanoparticles. In: Pozo Perez D (ed) Silver nanoparticles. ISBN: 978-953-307-028-5, InTech, doi:10.5772/8508

    Google Scholar 

  • Saha S, Sarkari J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopahogenic fungus Bipolaris nodulosa and its antimicrobial activity. Digest J of Nano and Biostruct 5:887–895

    Google Scholar 

  • Salata O (2004) Application of nanoparticles in biology and medicine. J Nanotechnol 2:1–6

    Google Scholar 

  • Sanders ME, Klaenhammer TR (2001) The scientific basis of Lactobacillus acidophilus NCFM functionally as a probiotic. J Dairy Sci 84:319–331

    Article  CAS  PubMed  Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Coll Surf B 77:214–218

    Article  CAS  Google Scholar 

  • Sarsar V, Selwal MK, Selwa KK (2015) Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM. J Saudi Chem Soc 19:682–688

    Article  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Seckbach J, Libby WF (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures. Space Life Sci 2:121–143

    CAS  PubMed  Google Scholar 

  • Selenska-Pobell S, Merroun ML (2010) Accumulation of heavy metals by microorganisms: bio-mineralization and nanocluster formation. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall components-structure and biochemistry. Springer, Heidelberg, pp 483–500

    Chapter  Google Scholar 

  • Selenska-Pobell S, Reitz T, Schönemann R, Herrmansdörfer T, Merroun M, Geißler A, Bartolomé J, Bartolomé F, García LM, Wilhelm F, Rogalev A (2011) Magnetic Au nanoparticles on archaeal S-layer ghosts as templates. Nanotechnol. 1:8. doi:10.5772/50955

    CAS  Google Scholar 

  • Senapati S, Mandal D, Ahmad A (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78A:101–105

    CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517–520

    Article  CAS  PubMed  Google Scholar 

  • Seong CN, Goodfellow M, Ward AC, Hah YC (1993) Numerical classification of acidophilic actinomycetes isolated from acid soil in Korea. Korean J Microbiol. 31:355–363

    CAS  Google Scholar 

  • Servin JA, Herbold CW, Skophammer RG, Lake JA (2008) Evidence excluding the root of the tree of life from the actinobacteria. Mol Biol Evol 25:1–4

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Jasuja ND, Kumar M, Irfan AliM (2015) Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis. J Nanotechnol. Article ID 132675, 6 p

    Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotechnol 7:102–105

    Google Scholar 

  • Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A (2002) Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high-performance liquid chromatography with evaporative light-scattering detection. J Bacteriol 184:556–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivashankarappa A, Sanjay KR (2015) Study on biological synthesis of cadmium sulfide nanoparticles by Bacillus licheniformis and its antimicrobial properties against food borne pathogens. Nanosci Nanotechnol Res 3:6–15

    CAS  Google Scholar 

  • Singh S, Vidyarthi AS, Nigam VK, Dev A (2014a) Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis. Artif Cells Nanomed Biotechnol 42:6–12

    Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh, AK, Mathew J (2014b) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. Article ID 408021, 8 p. doi:10.1155/2014/408021

    Google Scholar 

  • Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol 5:2. doi:10.4172/2157-7439.1000194

    Article  CAS  Google Scholar 

  • Steinmetz NF, Bize A, Findlay RC, Lomonossoff GP, Manchester M, Evans DJ, Prangishvili D (2008) Site-specific and spatially controlled addressability of a new viral nanobuilding block: Sulfolobus islandicus rod-shaped virus 2. Adv Funct Mater 18:3478–3486

    Article  CAS  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanoparticles. Chem Biol 11:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Tayde PS (2012) Antibacterial potential of silver nanoparticle produced from Lonar Lake Bacilli. Biosci Discovery. 3:351–354

    Google Scholar 

  • Tiquia SM (2008) Diversity of sulfate-reducing genes (dsrAB) in sediments from Puget Sound. Environ Technol 29:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Ichida JM, Keener HM, Elwell DL, Burtt EH Jr, Michel FC Jr (2005) Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Appl Microbiol Biotechnol 67:412–419

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Gurczynski S, Zhol A, Devol A (2006) Diversity of biogeochemical cycling genes from Puget Sound sediments using DNA microarrays. Environ Technol 27:1377–1389

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Tam NFY, Hodgkiss IJ (2007) Effects of bacterial inoculum and moisture adjustment on composting of pig manure. Environ Pollut 96:161–171

    Article  Google Scholar 

  • Tsibakhashvili N, Kalabegishvili T, Gabunia V, Gintury E, Kuchava N, Bagdavadze N, Pataraya D, Gurielidzse M, Gvarjaladze D, Lomidze L (2010) Synthesis of silver nanoparticles using bacteria. Nano Studies. 2:179–182

    Google Scholar 

  • Uddin I, Adyanthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P (2008) Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J Nanosci Nanotechnol 8:3909–3913

    Article  CAS  PubMed  Google Scholar 

  • van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  CAS  Google Scholar 

  • van de Vossenberg JLCM, Driessen AJM, Zillig W, Konings WN (1998a) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74

    Article  PubMed  Google Scholar 

  • van de Vossenberg JLCM, Driessen AJ, Konings WN (1998b) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170

    Article  PubMed  Google Scholar 

  • Veith A, Klingl A, Zolghadr B, Lauber K, Mentele R, Lottspeich F, Rachel R, Albers SV, Kletzin A (2009) Acidianus, Sulfolobus and Metallosphaera S-layers: Structure, composition and gene expression. Mol Microbiol 73:58–72

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2006) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane PR, Balasubramanya RH (2007) Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117

    Article  CAS  PubMed  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotech Progr 11:235–250

    Article  CAS  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Coll Surf B 80:94–102

    Article  CAS  Google Scholar 

  • Wiegel J (2011) Anaerobic alkaliphiles and alkaliphilic poly-extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 81–97

    Chapter  Google Scholar 

  • Williams ST, Davies FL, Mayfield CI, Khan MR (1971) Studies on the ecology of actinomycetes in soil. II. The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem 3:187–195

    Article  CAS  Google Scholar 

  • Williams ST, Flowers TH (1978) The influence of pH on starch hydrolysis by neutrophilic and acidophilic actinomycetes. Microbios 20:99–106

    CAS  PubMed  Google Scholar 

  • Williams ST, Robinson CS (1981) The role of streptomycetes in decomposition of chitin in acid soils. J Gen Microbiol 127:55–63

    CAS  Google Scholar 

  • Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Yin H, Zhang S, Leng F, Nan W, Li HJ (2010) Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1. Hazard Mater 178:209–217

    Article  CAS  Google Scholar 

  • Yan L, Yue Y, Zhang X, Chen S, Xu P, Li Z, Li YH (2012) Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans. Mat Sci Eng C. 32:1802–1832

    Article  CAS  Google Scholar 

  • Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y (2006) Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411

    Article  CAS  PubMed  Google Scholar 

  • Zaki S, El Kady MF, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46:1571–1576

    Article  CAS  Google Scholar 

  • Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50

    Google Scholar 

  • Zhang W, Chena Z, Liua H, Zhang L, Gaoa P, Daping L (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B 88:196–201

    Article  CAS  Google Scholar 

  • Zhang X, He X, Wang K, Wang Y, Li H, Tan W (2009) Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanosci Nanotechnol. 10:5738–5744

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Tiquia-Arashiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Tiquia-Arashiro, S., Rodrigues, D. (2016). Alkaliphiles and Acidophiles in Nanotechnology. In: Extremophiles: Applications in Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-45215-9_4

Download citation

Publish with us

Policies and ethics