Skip to main content
Log in

Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, an environmental friendly process for the synthesis of silver nanoparticles (AgNPs) using a fungus Aspergillus tamarii has been investigated. The process of silver ion reduction by the fungal extracellular filtrate was spontaneous which lead to the development of an easy process for synthesis of silver nanoparticles. The AgNPs formed were characterized using UV–Visible spectrum, FTIR, and SEM. The results revealed that silver ions reduction by the fungal extracellular filtrate started at 420 nm after 0.5 h of incubation time. The FTIR peaks were observed at 1393, 1820, 2727, and 3545 cm−1. The SEM result showed the distribution of spherical AgNPs ranging from 25 to 50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry MJ (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh BD, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains Cladosporium cladosporoides fungus. Colloids Surf B Biointerfaces 68:88–92

    Article  CAS  Google Scholar 

  • Bansal V, Ramanathan R, Bhargava SK (2011) Fungus-mediated biological approaches towards “green” synthesis of oxide nanomaterials. Aust J Chem 64:279–293

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B Biointerfaces 47:160

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(8):1–7

    Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelven PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles: an effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74:123–126

    Article  Google Scholar 

  • Fendler JH (ed) (1998) Nanoparticles and nanostructured films: preparation, characterization and applications. Wiley, Weinheim

    Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gole A, Dash C, Ramakrishnana V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic. Langmuir 17:1674–1679

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153

    Article  CAS  Google Scholar 

  • Kannan P, John SA (2008) Synthesis of mercapto thiadiazole functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotech 19:0850602

    Article  Google Scholar 

  • Kathiresan K, Manivanan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellatanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137

    Article  CAS  Google Scholar 

  • Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6:139–140

    Article  CAS  Google Scholar 

  • Luo L, Yu S, Qian S, Zhou T (2005) Large-scale fabrication of flexible silver/cross linked poly (vinyl alcohol) coaxial nanoscale by a facial solution approach. J Am Chem Soc 127:2822–2823

    Article  CAS  Google Scholar 

  • Mandal S, Phadtre S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phys 5:118–127

    Article  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J et al (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Narayanan KD, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73:374–381

    Article  Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26:2419–2424

    Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley, Weinheim, pp 126–135

    Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using the aqueous extract from the compaction producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Gene bank, National Institute of Agrobiological Sciences (NIAS), Japan for providing the fungal culture and also Dr. K. Jeganathan, Coordinator, Centre for Nanoscience and Nanotechnology, Bharathidasan University, Tiruchirappalli, India for providing SEM facility. One of author Rajesh kumar acknowledges UGC for providing Rajiv Gandhi National Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaliannan Thamaraiselvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajesh Kumar, R., Poornima Priyadharsani, K. & Thamaraiselvi, K. Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii . J Nanopart Res 14, 860 (2012). https://doi.org/10.1007/s11051-012-0860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0860-2

Keywords

Navigation