Skip to main content

Part of the book series: Microbiology Monographs ((MICROMONO,volume 28))

Abstract

The emergence of serious issues of multidrug resistance in the past few years forced the consideration of bacteriocins for combating infections. Numerous concerns have been raised against increased bacterial resistance toward effective drugs and become a debated issue all over the world. Alongside, there is an increase in consumer demand for the antimicrobial compounds isolated or derived from natural sources. Production of antimicrobial compounds is considered as a ubiquitous anti-competitor strategy in microbial ecosystem. Research on antimicrobial compounds with a special interest on bacteriocins is opening a door of a new age. Bacteriocins play an immense role in different industries to overcome various unrestrained environmental issues. Many researchers are now focusing on the bacteriocins of lactic acid bacteria (LAB) with plenty of applications not only in food industries but also in medical and health applications. Their infrequent and targeted use leads to the reduction in the emergence of drug resistance by microbes. Currently, bacteriocins produced by LAB are extensively studied due to their generally recognized as safe (GRAS) status. Various species of LAB are reported to have therapeutic properties that confer beneficial effects on human and animal health. The public health dilemma of drug resistance can be resolved by the discovery of new antimicrobial compounds having target-specific inhibition especially against multidrug-resistant organisms. Consequently, the pool of effective drugs could be available all the time to control newly emerging drug resistance in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee T, Klaenhammer TR, Letellier L (1994) Kinetic studies of the action of lacticin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol 60:1006–1013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abriouel H, Franz CMAP, Omar NB et al (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic, San Deigo, p 635

    Google Scholar 

  • Alanis AJ (2005) Resistance to antibiotics: Are we in the post-antibiotic era? Arch Med Res 36:697–705

    Article  PubMed  Google Scholar 

  • Ansari A, Aman A, Siddiqui NN et al (2012) Bacteriocin (BAC-IB17): screening, isolation and production from Bacillus subtilis KIBGE-IB17. Pak J Pharm Sci 25:195–201

    CAS  PubMed  Google Scholar 

  • Anthony T, Rajesh T, Kayalvizhi N et al (2009) Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour Technol 100:872–877

    Article  CAS  PubMed  Google Scholar 

  • Aranha C, Gupta S, Reddy KV (2004) Contraceptive efficacy of antimicrobial peptide nisin: in vitro and in vivo studies. Contraception 69(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Asaduzzaman SM, Sonomoto K (2009) Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 107:475–487

    Article  CAS  PubMed  Google Scholar 

  • Balciunas EM, Martinez FAC, Todorov SD et al (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142

    Article  CAS  Google Scholar 

  • Bernet MF, Brassart D, Neeser JR et al (1994) Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell-attachment and cell-invasion by enterovirulent bacteria. Gut 35:483–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bierbaum G, Sahl HG (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18

    Article  CAS  PubMed  Google Scholar 

  • Blackburn P, Goldstein BP (1995) Applied Microbiology, Inc., International patent application WO 97/10801

    Google Scholar 

  • Bravo D, Rodriguez E, Medina M (2009) Nisin and lacticin 481 coproduction by Lactococcus lactis strains isolated from raw ewes’ milk. J Dairy Sci 92:4805–4811

    Article  CAS  PubMed  Google Scholar 

  • Brotz H, Bierbaum G, Leopold K et al (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bull JJ, Regoes RR (2006) Pharmacodynamics of non-replicating viruses, bacteriocins and lysins. Proc Biol Sci 273:2703–2712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burlanek LL, Yousef AE (2000) Solvent extraction of bacteriocins from liquid cultures. Lett Appl Microbiol 31:193–197

    Article  Google Scholar 

  • Burton JP, Wescombe PA, Moore CJ et al (2006) Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 72(4):3050–3053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton JP, Wescombe PA, Macklaim JM et al (2013) Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics. PLoS One 8, e65991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Candela M, Perna F, Carnevali P et al (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125:286–292

    Article  CAS  PubMed  Google Scholar 

  • Carlet J, Pulcini C, Piddock LJV (2014) Antibiotic resistance: a geopolitical issue. Clin Microbiol Infect 20:949–953

    Article  CAS  PubMed  Google Scholar 

  • Cascales E, Buchanan SK, Duche D et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chasseignaux E, Gérault P, Toquin MT et al (2002) Ecology of Listeria monocytogenes in the environment of raw poultry meat and raw pork meat processing plants. FEMS Microbiol Lett 210:271–275

    Article  CAS  PubMed  Google Scholar 

  • Chumchalova J, Smarda J (2003) Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha) 48:111–115

    Article  CAS  Google Scholar 

  • Cintas LM, Casaus MP, Herranz C et al (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305

    Article  CAS  Google Scholar 

  • Cladera-Olivera F, Caron GR, Brandelli A (2004) Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett Appl Microbiol 38:251–256

    Article  CAS  PubMed  Google Scholar 

  • Coconnier MH, Liévin V, Bernet-Camard MF et al (1997) Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob Agents Chemother 41:1046–1052

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  PubMed  Google Scholar 

  • Cover TL, Blaser MJ (1995) Helicobacter pylori: a bacterial cause of gastritis, peptic ulcer disease, and gastric cancer. ASM News 61:21–26

    Google Scholar 

  • de Vos WM, Kuipers OP, van der Meer JR (1995) Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Grampositive bacteria. Mol Microbiol 17:427–437

    Article  PubMed  Google Scholar 

  • Deegan LH, Cotter PD, Hill C et al (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    Article  CAS  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ et al (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202

    Article  CAS  PubMed  Google Scholar 

  • Diez-Gonzalez F (2007) Applications of bacteriocins in livestock. Intest Microbiol 8:15–24

    CAS  Google Scholar 

  • Dortu C, Huch M, Holzapfel WH et al (2008) Antilisterial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Lett Appl Microbiol 47:581–586

    Article  CAS  PubMed  Google Scholar 

  • Drider D, Fimland G, Hechard Y et al (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn BE, Cohen H, Blaser MJ (1997) Helicobacter pylori. Clin Microbiol Rev 10:720–741

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dunne C, O’Mahony L, Murphy L et al (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73:386S–392S

    CAS  PubMed  Google Scholar 

  • Eijsink VGH, Skeie M, Middelhoven PH et al (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eijsink VGH, Axelsson L, Diep DB et al (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654

    Article  CAS  PubMed  Google Scholar 

  • Ennahar S, Sashihara T, Sonomoto K (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106

    Article  CAS  PubMed  Google Scholar 

  • Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88:39–49

    Article  CAS  Google Scholar 

  • Forget G (1993) Balancing the need for pesticides with the risk to human health. In: Forget G, Goodman T, de Villiers A (eds) Impact of pesticide use on health in developing countries. IDRC, Ottawa, p 2

    Google Scholar 

  • Galvez A, Abriouel H, Lopez RL et al (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  CAS  PubMed  Google Scholar 

  • Galvin M, Hill C, Ross RP (1999) Lacticin 3147 displays activity in buffer against Gram-positive pathogens which appear insensitive in standard plate assays. Lett Appl Microbiol 28:355–358

    Article  CAS  PubMed  Google Scholar 

  • Gillor O, Nigro LM, Riley MA (2005) Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des 1:1067–1075

    Article  Google Scholar 

  • Gotteland M, Andrews M, Toledo M et al (2008) Modulation of Helicobacter pylori colonization with cranberry juice and Lactobacillus johnsonii La1 in children. Nutrition 24:421–426

    Article  PubMed  Google Scholar 

  • Gratia A (1925) Sur un remarquable example d’antagonisme entre deux souches de colibacille. C R Seances Soc Biol 93:1040–1042

    Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM et al (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554

    Article  CAS  PubMed  Google Scholar 

  • Grundmann H, Aires-de-Sousa M, Boyce J et al (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–885

    Article  PubMed  Google Scholar 

  • Guasch JF, Enfedaque J, Ferrer S et al (1995) Bacteriocin 28b, a chromosomally encoded bacteriocin produced by most Serratia marcescens biotypes. Res Microbiol 146:477–483

    Article  CAS  PubMed  Google Scholar 

  • Guggenheim M, Zbinden R, Handschin AE et al (2009) Changes in bacterial isolates from burn wounds and their antibiograms: a 20-year study (1986-2005). Burns 35:553–560

    Article  PubMed  Google Scholar 

  • Hamed HA, Moustafa YA, Abdel-Aziz SM (2011) In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Sci J 8(4):462–468

    Google Scholar 

  • He L, Chen W, Liu Y (2006) Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiol Res 161:321–326

    Article  CAS  PubMed  Google Scholar 

  • Héchard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557

    Article  PubMed  Google Scholar 

  • Heng NCK, Wescombe PA, Burton JP et al (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan CM (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 45–92

    Chapter  Google Scholar 

  • Howell TH, Fiorellini JP, Blackburn P et al (1993) The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J Clin Periodontol 20(5):335–339

    Article  CAS  PubMed  Google Scholar 

  • Hudault S, Liévin V, Bernet-Camard MF et al (1997) Antagonistic activity in vitro and in vivo exerted by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl Environ Microbiol 63:513–518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Igbedioh SO (1991) Effects of agricultural pesticides on humans, animals and higher plants in developing countries. Arch Environ Health 46(4):218–224

    Article  CAS  PubMed  Google Scholar 

  • Jabeen N, Gul H, Subhan SA et al (2009) Biophysicochemical characterization of bacteriocins (S) from indigenously isolated Agrobacterium radiobacter NA6. Pak J Bot 41:3227–3237

    Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen SO, Lyon BR (2009) Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4:565–582

    Article  CAS  PubMed  Google Scholar 

  • Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a choromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167:439–446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joo NE, Ritchie K, Kamarajan P et al (2012) Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med 1:295–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamoun F, Fguira IB, Hassen NB et al (2011) Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Appl Biochem Biotechnol 165:300–314

    Article  CAS  PubMed  Google Scholar 

  • Kim TS, Hur JW, Yu MA et al (2003) Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J Food Prot 66:3–12

    CAS  PubMed  Google Scholar 

  • Kjos M, OppegÃ¥rd C, Diep DB et al (2014) Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol Microbiol 92(6):1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    Article  CAS  PubMed  Google Scholar 

  • Kolter R, Moreno F (1992) Genetics of ribosomally synthesized peptide antibiotics. Annu Rev Microbiol 46:141–161

    Article  CAS  PubMed  Google Scholar 

  • Korenblum E, Sebastián GV, Paiva MM et al (2008) Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation. Appl Microbiol Biotechnol 79:97–103

    Article  CAS  PubMed  Google Scholar 

  • Kuo S, Chiang M, Lee W et al (2012) Comparison of microbiological and clinical characteristics based in SCCmec typing in patients with community-onset meticillin-resistant Staphylococcus aureus (MRSA) bacteraemia. Int J Antimicrob Agents 39:22–26

    Article  CAS  PubMed  Google Scholar 

  • Lagos R, Tello M, Mecardo G et al (2009) Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr Pharm Biotechnol 10:74–85

    Article  CAS  PubMed  Google Scholar 

  • Lancaster LE, Wintermeyer W, Rodnina MV (2007) Colicins and their potential in cancer treatment. Blood Cells Mol Dis 38(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Lawton EM, Ross RP, Hill C et al (2007) Two-peptide lantibiotics: a medical perspective. Mini Rev Med Chem 7:1236–1247

    Article  CAS  PubMed  Google Scholar 

  • Lee KD, Gray EJ, Mabood F et al (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229(4):747–755

    Article  CAS  PubMed  Google Scholar 

  • Ljungh A, Wadstrom T (2006) Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 7:73–89

    CAS  PubMed  Google Scholar 

  • Marki F, Hanni E, Fredenhagen A et al (1991) Mode of action of the Lanthionine containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol 42:2027–2035

    Article  CAS  PubMed  Google Scholar 

  • Martin NI, Sprules T, Carpenter MR et al (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43:3049–3056

    Article  CAS  PubMed  Google Scholar 

  • Martirani L, Varcamonti M, Naclerio G et al (2002) Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb Cell Fact 1:1–5

    Article  PubMed Central  PubMed  Google Scholar 

  • McGowan CC, Cover TL, Blaser MJ (1996) Helicobacter pylori and gastric acid: biological and therapeutic implications. Gastroenterology 110:926–938

    Article  CAS  PubMed  Google Scholar 

  • Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  CAS  PubMed  Google Scholar 

  • Mojgani N, Sabiri G, Ashtiani MP, et al (2009) Characterization of bacteriocins produced by Lactobacillus brevis NM 24 and Lactobacillus fermentum NM 332 isolated from green olives in Iran. Int J Microbiol 6(2)

    Google Scholar 

  • Mota-Meira M, Lacroix C, LaPointe G et al (1997) Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett 410:275–279

    Article  CAS  PubMed  Google Scholar 

  • Mota-Meira M, Morency H, Lavoie MC (2005) In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 56:869–871

    Article  CAS  PubMed  Google Scholar 

  • Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin like substances by Bacillus sp. strain P34. World J Microbiol Biotechnol 24:641–646

    Article  CAS  Google Scholar 

  • Mutus L, Kocabagli N, Aip M et al (2006) The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci 85:1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Navaratna MA, Sahl HG, Tagg JR (1998) Two components anti Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl Environ Microbiol 64:4803–4808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50–61

    Article  CAS  PubMed  Google Scholar 

  • Nes IF, Diep DB, Havarstein LS et al (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  CAS  PubMed  Google Scholar 

  • Nes IF, Yoon S, Diep DB (2007) Ribosomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol 16:675–690

    CAS  Google Scholar 

  • Nissen-Meyer J, Nes IF (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167:67–77

    Article  CAS  Google Scholar 

  • Nissen-Meyer J, Rogne P, Oppegard C et al (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by Gram-positive bacteria. Curr Pharm Biotechnol 10(1):19–37

    Article  CAS  PubMed  Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Indus Microbiol Biotechnol 28:23–31

    Article  CAS  Google Scholar 

  • O’Shea EF, O’Connor PM, Raftis EJ et al (2011) Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J Bacteriol 193:6973–6982

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Shea EF, Cotter PD, Ross RP et al (2013) Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr Opin Biotechnol 24:130–134

    Article  CAS  Google Scholar 

  • Ogata K, Narimatsu H, Suzuki M et al (2012) Commercially distributed meat as a potential vehicle for community-acquired methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78:2797–2802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oppegard C, Rogne P, Emanuelsen L et al (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219

    Article  CAS  PubMed  Google Scholar 

  • Osmanagaoglu O, Kiran F (2011) Evidence for a chromosomally determined mesenterocin, a bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides OZ. J Basic Microbiol 51:279–288

    Article  CAS  PubMed  Google Scholar 

  • Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38:864–870

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function and applications. Biotechnol Adv 21:465–499

    Article  CAS  PubMed  Google Scholar 

  • Pattnaik P, Kaushik JK, Grover S et al (2001) Purification and characterization of a bacteriocin-like compound (lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J Appl Microbiol 91:636–645

    Article  CAS  PubMed  Google Scholar 

  • Pepperney A, Chikindas ML (2011) Antibacterial peptides: opportunities for the prevention and treatment of dental caries. Probiotics Antimicrob Proteins 3:68–96

    Article  CAS  Google Scholar 

  • Podila GK, Varma A (2005) Biotechnological application of microbes. I.K International Private Limited, New Delhi, p 285

    Google Scholar 

  • Prabhavati E, Anthony JAM (2012) Bacteriocin production by rhizobia isolated from root nodules of Horse gram. Bangladesh J Med Sci 11:28–32

    Article  Google Scholar 

  • Rea MC, Clayton E, O’Connor PM et al (2007) Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J Med Microbiol 56:940–946

    Article  CAS  PubMed  Google Scholar 

  • Rice KC, Bayles KW (2008) Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 72:85–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Pinou T, Wertz JE et al (2001) Molecular characterization of the Klebicin B plasmid of Klebsiella pneumonia. Plasmid 45:209–221

    Article  CAS  PubMed  Google Scholar 

  • Ross RP, Galvin M, McAuliffe O et al (1999) Developing applications for lactococcal bacteriocins. Antonie Van Leeuwenhoek 76:337–346

    Article  CAS  PubMed  Google Scholar 

  • Saeed S, Ahmad S, Rasool SA (2004) Antimicrobial spectrum, production and mode of action of staphlococcin 188 produced by staphylococcus aureus 188. Pak J Pharm Sci 17:1–8

    CAS  PubMed  Google Scholar 

  • Sahl HG (1994) Gene-encoded antibiotics made in bacteria. In: Bomam HG, Marsh J, Goode JA (eds) Antimicrobial peptides. Wiley, New York, pp 27–53

    Google Scholar 

  • Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol 52:41–79

    Article  CAS  PubMed  Google Scholar 

  • Sahl HG, Jack RW, Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230:827–853

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Hidalgo M, Montalban-Lopez M, Cebrian R et al (2011) AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 68:2845–2857

    Article  CAS  PubMed  Google Scholar 

  • Schmitz FJ, Steiert M, Tichy HV et al (1998) Typing of methicillin-resistant Staphylococcus aureus isolates from Düsseldorf by six genotypic methods. J Med Microbiol 47:341–351

    Article  CAS  PubMed  Google Scholar 

  • Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    Article  CAS  PubMed  Google Scholar 

  • Stern NJ, Svetoch EA, Eruslanov BV et al (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother 50:3111–3116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutyak KE, Anderson RA, Dover SE et al (2008) Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol 2008:540758

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tacconelli E, De Angelis G, Cataldo MA et al (2008) Does antibiotic exposure increase the risk of methicillin resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J Antimicrob Chemother 61:26–38

    Article  CAS  PubMed  Google Scholar 

  • Torkar KG, Matijasic BB (2003) Partial characterisation of bacteriocins produced by Bacillus cereus isolates from milk and milk products. Food Technol Biotechnol 41:121–130

    CAS  Google Scholar 

  • Trias R, Badosa E, Montesinos E et al (2008) Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int J Food Microbiol 127:91–98

    Article  CAS  PubMed  Google Scholar 

  • van Kraaij C, de Vos WM (1999) Lantibiotics: biosynthesis, mode of action and applications. Nat Prod Rep 16:575–587

    Article  PubMed  Google Scholar 

  • Vaughan EE, Daly C, Fitzgerald GF (1992) Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol 73:299–308

    Article  CAS  PubMed  Google Scholar 

  • Venema K, Chikindas ML, Seegers JFMI et al (1997) Rapid and efficient purification method for small, hydrophobic, cationic Bacteriocins: purification of lactococcin B and pediocin PA-1. Appl Environ Microbiol 63P:305–309

    Google Scholar 

  • Whitford MF, McPherson MA, Forster RJ et al (2001) Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl Environ Microbiol 67:569–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wynne AG, Gibson GR, Brostoff J (2006) Composition comprising a Lactobacillus pentosus strain and uses thereof. USA Patent, 7125708

    Google Scholar 

  • Xie J, Zhang R, Shang C et al (2009) Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr J Biotechnol 8:5611–5619

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ansari, A. (2015). Bacteriocin from LAB for Medical and Health Applications. In: Liong, MT. (eds) Beneficial Microorganisms in Medical and Health Applications. Microbiology Monographs, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-23213-3_10

Download citation

Publish with us

Policies and ethics