Skip to main content

Advertisement

Log in

Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abee T (1995) Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett 129:1–10

    CAS  Google Scholar 

  2. Anonymous (2010) NIH conensus statement on dental caries management. The American Dental Hygienists’ Association (ADHA). Retrieved Oct 2, 2010, from http://www.adha.org/profissues/nih_consensus_statement.htm/

  3. Akesson M, Dufour M, Sloan GL, Simmonds RS (2007) Targeting of streptococci by zoocin A. FEMS Microbiol Lett 270:155–161

    Article  CAS  Google Scholar 

  4. Alvarez DC, Perez VH, Justo OR (2006) Effect of the extremely low frequency magnetic field on nisin production by Lactococcus lactis subsp lactis using cheese whey permeate. Process Biochem 41:1967–1973

    Article  CAS  Google Scholar 

  5. Anusavice KJ (2005) Present and future approaches for the control of caries. J Dent Educ 69:538–554

    Google Scholar 

  6. Aretz VL (1999) Ala(0)-actagardine, a new lantibiotic from cultures of Actinoplanes liguriae ATCC 31048. J Antibiot 52:730–741

    Google Scholar 

  7. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603

    CAS  Google Scholar 

  8. Bajjar MB, Kashtanov D, Chikindas ML (2009) Natural antimicrobials e-Poly-l-lysine and nisin A for control of oral microflora. Probiotics and Antimicro Prot 1:143–147

    Article  CAS  Google Scholar 

  9. Bals R, Wilson JM (2003) Cathelicidins—a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60:711–720

    Article  CAS  Google Scholar 

  10. Bender GR, Sutton SV, Marquis RE (1986) Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immunol 53:331–338

    CAS  Google Scholar 

  11. Bierbaum BH (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    Google Scholar 

  12. Bierbaum G, Sahl H (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18

    Article  CAS  Google Scholar 

  13. BioXtra Health Care (2011) BioXtra. Retrieved Apr 5, 2011, from http://www.bioxhealthcare.com/

  14. Blackburn P, Goldstein BP, inventors; AMBI, Inc., assignee (1996) Nisin compositions to prevent the promotion of tooth decay by suppressing formation of acid from foods by oral bacteria. WIPO WO97/10801. 1996 Sep 19

  15. Bobek SH (2000) In vitro assessment of antifungal therapeutic potential of salivary histatin-5, two variants of histatin-5, and salivary mucin (MUC7) domain 1. Antimicrob Agents Chemother 44:1485–1493

    Article  Google Scholar 

  16. Bretz WA LW (1987) Characteristics of trypsin-like activity in subgingival plaque samples. J Dent Res 66:1668–1672

    Article  Google Scholar 

  17. Breukink WI (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    Google Scholar 

  18. Bush K (2004) Antibacterial drug discovery in the 21st century. Clin Microbiol Infect 10:10–17

    Article  Google Scholar 

  19. Calderón-Santiago M, Luque DC (2009) The dual trend in histatins research. TrAC Trends Anal Chem 28:1011–1018

    Article  CAS  Google Scholar 

  20. Campese M, Sun X, Bosch JA, Oppenheim FG, Helmerhorst EJ (2009) Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. Arch Oral Biol 54:345–353

    Article  CAS  Google Scholar 

  21. Casamassimo PS, Thikkurissy S, Edelstein BL (2009) Beyond the dmft the human and economic cost of early childhood caries. J Am Dent Assoc 140:650–657

    Google Scholar 

  22. Caufield PW, Cutter GR, Dasanayake AP (1993) Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res 72:37–45

    Article  CAS  Google Scholar 

  23. Caufield PM (1990) Preliminary characterization of four bacteriocins from Streptococcus mutans. Can J Microbiol 36:123–130

    Article  Google Scholar 

  24. Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS (2007) The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J Antimicrob Chemother 59:297–300

    Article  CAS  Google Scholar 

  25. Chatterjee C, Paul M, Xie L (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–683

    Article  CAS  Google Scholar 

  26. Chatterjee CS (1992) Mersacidin, a new antibiotic from Bacillus: in vitro and in vivo antibacterial activity. J Antibiot 45:839–845

    CAS  Google Scholar 

  27. Chen P, Novak J, Kirk M, Barnes S, Qi F, Caufield PW (1998) Structure-activity study of the lantibiotic mutacin II from Streptococcus mutans T8 by a gene. Appl Env Microbiol 64:2335–2340

    CAS  Google Scholar 

  28. Chikindas ML, Novak J, Caufield PW (1997) Microbially-produced peptides having potential application to the prevention of dental caries. Int J Antimicrob Agents 9:95–105

    Article  CAS  Google Scholar 

  29. Chikindas ML, Novak J, Driessen AJM (1995) Mutacin-II, a bactericidal lantibiotic from Streptococcus mutans. Antimicrob Agents Chemother 39:2656–2660

    CAS  Google Scholar 

  30. Cirioni GA (2005) In vitro activity of the histatin derivative P-113 against multidrug-resistant pathogens responsible for pneumonia in immunocompromised patients. Antimicrob Agents Chemother 49:1249–1252

    Article  CAS  Google Scholar 

  31. Concannon SP, Crowe TD, Abercrombie JJ, Molina CM, Hou P, Sukumaran DK, Raj PA, Leung KP (2003) Susceptibility of oral bacteria to an antimicrobial decapeptide. J Med Microbiol 52:1083–1093

    Article  CAS  Google Scholar 

  32. Connor FD (2008) The generation of nisin variants with enhanced activity against specific Gram-positive pathogens. Mol Microbiol 69:218–230

    Article  CAS  Google Scholar 

  33. Cotter PD, Hill C, Ross RP (2005) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Peptide Sci 6:61–75

    Article  CAS  Google Scholar 

  34. Curaprox (2011) Enzycal. Retrieved Apr 5, 2011, from http://curaprox.gr/contents/

  35. Dagan FR (2000) Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity. J Biol Chem 275:4230–4238

    Article  Google Scholar 

  36. Dahal N, Chaney N, Ellis D, Lu S, Smith L (2010) Optimization of the production of the lantibiotic mutacin 1140 in minimal media. Process Biochem 45:1187–1191

    Article  CAS  Google Scholar 

  37. Dajani AS, Gray ED, Wannamaker LW (1970) Bactericidal substance from Staphylococcus aureus. Biological properties. J Exp Med 131:1004–1015

    Article  CAS  Google Scholar 

  38. Dajani AS, Wannamaker L (1969) Demonstration of a bactericidal substance against beta-hemolytic streptococci in supernatant fluids of staphylococcal cultures. J Bacteriol 97:985–991

    CAS  Google Scholar 

  39. Dashper SG, Liu SW, Reynolds EC (2007) Antimicrobial peptides and their potential as oral therapeutic agents. Int J Pept Res Ther 13:505–516

    Article  CAS  Google Scholar 

  40. Dashper SG, O’Brien-Simpson NM, Cross KJ, Paolini RA, Hoffmann B, Catmull DV, Malkoski M, Reynolds EC (2005) Divalent metal cations increase the activity of the antimicrobial peptide kappacin. Antimicrob Agents Chemother 49:2322–2328

    Article  CAS  Google Scholar 

  41. de Kwaadsteniet M, Doeschate KT, Dicks LMT (2009) Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol 48:65–70

    Article  CAS  Google Scholar 

  42. de Kwaadsteniet M, ten Doeschate K, Dicks LMT (2008) Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl Envl Microbiol 74:547–549

    Article  CAS  Google Scholar 

  43. Delisle AL (1986) Properties of mutacin B, an antibacterial substance produced by Streptococcus mutans strain BHT. Microbios 46:21–28

    CAS  Google Scholar 

  44. Delisle AL (1976) Activity of two Streptococcus mutans bacteriocins in the presence of saliva, levan, and dextran. Infect Immun 13:619–626

    CAS  Google Scholar 

  45. Dong N, Faraj J, Capan Y, Leung K, DeLuca P (2007) Stability of antimicrobial decapeptide (KSL) and its analogues for delivery in the oral cavity. Pharm Res 24:1544–1550

    Article  CAS  Google Scholar 

  46. Dorocka KK (2010) Susceptibility of Candida biofilms to histatin 5 and fluconazole. Anton Leeuw Int J G 97:413–417

    Article  CAS  Google Scholar 

  47. Douglass CW, Day JM (1979) Cost and payment of dental services in the United States. J Dent Educ 43:330–348

    CAS  Google Scholar 

  48. Dowd KK (2004) Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56:285–289

    Google Scholar 

  49. Draper LA, Ross RP, Hill C (2008) Lantibiotic immunity. Curr Protein Peptide Sci 9:39–49

    Article  CAS  Google Scholar 

  50. Eckert R, He J, Yarbrough DK, Qi F, Anderson MH, Shi W (2006) Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother 50:3651–3657

    Article  CAS  Google Scholar 

  51. Eto NE (2004) Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci. Curr Microbiol 48:85–87

    Article  CAS  Google Scholar 

  52. FDA. Federal Register (1998) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. 21 CFR Part 184, federal register. 53:11247–11251

  53. Featherstone JDB (2000) The science and practice of caries prevention. J Am Dent Assoc 131:887–899

    CAS  Google Scholar 

  54. Franz AH (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  Google Scholar 

  55. Franzman MR, Burnell KK, Dehkordi-Vakil F, Guthmiller JM, Dawson DV, Brogden KA (2009) Targeted antimicrobial activity of a specific IgG—SMAP28 conjugate against Porphyromonas gingivalis in a mixed culture. Int J Antimicrob Agents 33:14–20

    Article  CAS  Google Scholar 

  56. Fuchs PC, Barry AL, Brown SD (1998) In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob Agents Chemother 42:1213–1216

    CAS  Google Scholar 

  57. Fukao YF (2008) Biosynthetic characterization and biochemical features of the third natural nisin variant, nisin Q, produced by Lactococcus lactis 61–14. J Appl Microbiol 105:1982–1990

    Article  CAS  Google Scholar 

  58. Fukao ZT (2003) Identification of the lantibiotic Nisin Q, a new natural nisin variant produced by Lactococcus lactis 61–14 isolated from a river in Japan. Biosci Biotech Biochem 67:1616–1619

    Article  Google Scholar 

  59. Fukushima FH (1982) Purification and chemical analysis of a bacteriocin from the oral bacterium Streptococcus mutans RM-10. Arch Oral Biol 27:721–727

    Article  CAS  Google Scholar 

  60. Fukutani TY (1990) Characterization of leukocyte chemotactic activity of bacteriocin from Streptococcus mutans RM-10. Inflammation 14:561–569

    Article  Google Scholar 

  61. Gargis SR, Heath HE, Heath LS (2009) Use of 4-sulfophenyl isothiocyanate labeling and mass spectrometry to determine the site of action of the streptococcolytic peptidoglycan hydrolase zoocin A. Appl Environ Microbiol 75:72–77

    Article  CAS  Google Scholar 

  62. Ge YG, MacDonald DL, Holroyd KJ (1999) In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 43:782–788

    CAS  Google Scholar 

  63. Genco CA, Maloy WL, Kari UP (2003) Antimicrobial activity of magainin analogues against anaerobic oral pathogens. Int J Antimicrob Agents 21:75–78

    Article  CAS  Google Scholar 

  64. Ghobrial OG, Derendorf H, Hillman JD (2009) Pharmacodynamic activity of the lantibiotic MU1140. Int J Antimicrob Agents 33:70–74

    Article  CAS  Google Scholar 

  65. GlaxoSmithKline (2011) Biotene. Retrieved Apr 5, 2011, from http://www.biotene.com/

  66. Gobbo DR (2010) Porphyrin-apidaecin conjugate as a new broad spectrum antibacterial agent. ACS Med Chem Lett 1:35–38

    Article  CAS  Google Scholar 

  67. Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116

    Article  CAS  Google Scholar 

  68. Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta Biomembr 1788:1680–1686

    Article  CAS  Google Scholar 

  69. Gross E, Morell JL (1971) Structure of nisin. J Am Chem Soc 93:4634–4635

    Article  CAS  Google Scholar 

  70. Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    Article  CAS  Google Scholar 

  71. Hancock REW, Sahl H (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  Google Scholar 

  72. Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422

    Article  CAS  Google Scholar 

  73. Hartman M, Martin A, Nuccio O, Catlin A (2010) Health spending growth at a historic low in 2008. Health Aff 29:147–155

    Article  Google Scholar 

  74. Hasper SL (2008) Elucidation of the antimicrobial mechanism of mutacin 1140. Biochemistry 47:3308–3314

    Article  CAS  Google Scholar 

  75. Hay DI (1975) Fractionation of human parotid salivary proteins and the isolation of a histidine-rich acidic peptide which shows high affinity for hydroxyapatite surfaces. Arch Oral Biol 20:553–558

    Article  CAS  Google Scholar 

  76. Hazlett L, Wu M (2011) Defensins in innate immunity. Cell Tiss Res 343:175–188

    Article  CAS  Google Scholar 

  77. He ZG, Yuan CH, Zhang LW (2008) N-terminal acetylation in paenibacillin, a novel lantibiotic. FEBS Lett 582:2787–2792

    Article  CAS  Google Scholar 

  78. He Z, Kisla D, Zhang L, Yuan C, Green-Church K, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. App Env Microbiol 73:168–178

    Article  CAS  Google Scholar 

  79. Helmerhorst EJ, Oppenheim FG (2007) Saliva: a dynamic proteome. J Dent Res 86:680–693

    Article  CAS  Google Scholar 

  80. Helmerhorst EJ, Alagl AS, Siqueira WL (2006) Oral fluid proteolytic effects on histatin 5 structure and function. Arch Oral Biol 51:1061–1070

    Article  CAS  Google Scholar 

  81. Helmerhorst EJ, Hodgson R, van’t Hof W (1999) The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 78:1245–1250

    Article  CAS  Google Scholar 

  82. Helmerhorst EJ, van’t Hof W, Veerman ECI (1997) Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326:39–45

    CAS  Google Scholar 

  83. Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC, Amerongen AV, Abee T (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274:7286–7291

    Article  CAS  Google Scholar 

  84. Helmerhorst EJ, Reijnders IM, van’t Hof W, Veerman EC, Nieuw Amerongen AV (1999) A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett 449:105–110

    Article  CAS  Google Scholar 

  85. Henzler Wildman KA, Lee D, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42:6545–6558

    Article  CAS  Google Scholar 

  86. Hill GM (1999) Lacticin 3147 displays activity in buffer against Gram-positive bacterial pathogens which appear insensitive in standard plate assays. Lett Appl Microbiol 28:355–358

    Article  Google Scholar 

  87. Hillman JD, Novak J, Sagura E, Gutierrez JA, Brooks TA, Crowley PJ, Hess M, Azizi A, Leung K, Cvitkovitch D, Bleiweis AS (1998) Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun 66:2743–2749

    CAS  Google Scholar 

  88. Hillman JD, Brooks TA, Michalek SM, Harmon CC, Snoep JL, van Der Weijden CC (2000) Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect Immun 68:543–549

    Article  CAS  Google Scholar 

  89. Hillman JD, Johnson KP, Yaphe BI (1984) Isolation of a Streptococcus mutans strain producing a novel bacteriocin. Infect Immun 44:141–144

    CAS  Google Scholar 

  90. Hillman D, Orugunty R, Smith J, inventors; Oragenics, Inc., assignee (2009) Differentially protected orthogonal lantionine technology. United States patent US 7,521,529. 2009 Apr 21

  91. Hillman JD, Mo J, McDonell E, Cvitkovitch D, Hillman CH (2007) Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J Appl Microbiol 102:1209–1219

    Article  CAS  Google Scholar 

  92. Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147:643–651

    CAS  Google Scholar 

  93. Hong SY, Oh JE, Kwon M, Choi MJ, Lee JH, Lee BL, Moon HM, Lee KH (1998) Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob Agents Chemother 42:2534–2541

    CAS  Google Scholar 

  94. Howell TH, Florellini JP, Blackburn P, Projan SJ, Harpe DI, Williams RC (1993) The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J Clin Periodontol 20:335–339

    Article  CAS  Google Scholar 

  95. Hultmark SH (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  Google Scholar 

  96. Hyink O, Balakrishnan M, Tagg JR (2005) Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252:235–241

    Article  CAS  Google Scholar 

  97. Ikeda T, Iwanami T, Hirasawa M, Watanabe C, McGhee JR, Shiota T (1982) Purification and certain properties of a bacteriocin from Streptococcus mutans. Infect Immun 35:861–868

    CAS  Google Scholar 

  98. Ikeda TK (1984) Mode of inhibitory action of a bacteriocin produced by Streptococcus mutans C3603. Infect Immun 44:370–378

    Google Scholar 

  99. Imanishi HS (1986) Isolation and mode of action of a cell-free bacteriocin (mutacin) from serotype g Streptococcus mutans MT3791. Zentralblatt fur Bakteriologie, Mikrobiologie, und hygiene—series A. Med Microbiol Infect Dis Virol Parasitol 261:287–298

    Google Scholar 

  100. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  Google Scholar 

  101. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilosin a, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction. Biochemistry 43:3385–3395

    Article  CAS  Google Scholar 

  102. Kelstrup FH (1985) Characterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10. Arch Oral Biol 30:229–234

    Article  Google Scholar 

  103. Kelstrup FH (1983) Isolation, partial purification and preliminary characterization of a bacteriocin from Streptococcus mutans RM-10. Anton Leeuw Int J G49:41–50

    Google Scholar 

  104. Kim HS, Park CB, Kim MS (1996) cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem Biophys Res Commun 229:381–387

    Article  CAS  Google Scholar 

  105. Kirk NJ (1996) Detection of modified amino acids in lantibiotic peptide mutacin II by chemical derivatization and electrospray ionization mass spectroscopic analysis. Anal Biochem 236:358–360

    Article  Google Scholar 

  106. Kirkup BC (2006) Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications. Curr Med Chem 13:3335–3350

    Article  CAS  Google Scholar 

  107. Komatsuzawa H, Ouhara K, Kawai T, Yamada S, Fujiwara T, Shiba H, Kurihara H, Taubman MA, Sugai M (2007) Susceptibility of periodontopathogenic and cariogenic bacteria to defensins and potential therapeutic use of defensins in oral diseases. Curr Pharm Des 13:3084–3095

    Article  CAS  Google Scholar 

  108. Komatsuzawa OK (2005) Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, beta-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother 55:888–896

    Article  CAS  Google Scholar 

  109. Koo SP, Bayer AS, Yeaman MR (2001) Diversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides. Infect Immun 69:4916–4922

    Article  CAS  Google Scholar 

  110. Koulourides IT (1985) Anti-dental caries effect in rats and man of a bacteriocin purified from the oral bacterium Streptococcus mutans C3603. Arch Oral Biol 30:381–384

    Article  Google Scholar 

  111. Kuramitsu HK (1993) Virulence factors of mutans streptococci—role of molecular genetics. Crit Rev Oral Bio Med 4:159–176

    CAS  Google Scholar 

  112. Kuramitsu YH (2005) Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 49:541–548

    Article  CAS  Google Scholar 

  113. Laube BN (2007) Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicro Agents Chemother 51:4125–4132

    Article  CAS  Google Scholar 

  114. Lavoie MH (1991) Effects of dietary carbohydrates on mutacin production and activity. Microbios 67:35–46

    Google Scholar 

  115. Lawton EM, Ross RP, Hill C, Cotter PD (2007) Two-peptide lantibiotics: a medical perspective. Mini-Rev Med Chem 7:1236–1247

    Article  CAS  Google Scholar 

  116. Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267:64–71

    Article  CAS  Google Scholar 

  117. Lazzarini CF (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15:22–31

    Article  CAS  Google Scholar 

  118. Lecar EG (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10:1–34

    Article  Google Scholar 

  119. Lee TS (2005) Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 137:38–51

    Article  CAS  Google Scholar 

  120. Leung KP, Abercrombie JJ, Campbell TM, Gilmore KD, Bell CA, Faraj JA, DeLuca PP (2009) Antimicrobial peptides for plaque control. Adv Dent Res 21:57–62

    Article  Google Scholar 

  121. Leung KP, Crowe TD, Abercrombie JJ, Molina CM, Bradshaw CJ, Jensen CL, Luo Q, Thompson GA (2005) Control of oral biofilm formation by an antimicrobial decapeptide. J Dent Res 84:1172–1177

    Article  CAS  Google Scholar 

  122. Li LN, Guo LH, Lux R (2010) Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection. Int Jour Oral Sci 2:66–73

    Article  Google Scholar 

  123. Li XWS, Reddy MS, Baev D (2003) Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278:28553–28561

    Article  CAS  Google Scholar 

  124. Liu X, Chung Y, Yang S, Yousef AE (2005) Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem 40:13–24

    Article  CAS  Google Scholar 

  125. Loesche WJ, Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380

    CAS  Google Scholar 

  126. Loesche WJ (1976) Chemotherapy of dental plaque infections. Oral Sci Rev 9:63–107

    Google Scholar 

  127. Loffet A (2002) Peptides as drugs: is there a market? J Pept Sci 8:1–7

    Article  CAS  Google Scholar 

  128. Loyola-Rodriguez JP, Morisaki I, Kitamura K, Hamada S (1992) Purification and properties of extracellular mutacin, a bacteriocin from Streptococcus sobrinus. J Gen Microbiol 138:269–274

    CAS  Google Scholar 

  129. Macielag BK (2004) Taking inventory: antibacterial agents currently at or beyond Phase 1. Curr Opin Microbiol 7:466–476

    Article  CAS  Google Scholar 

  130. Mackay BJ, Denepitiya L, Iacono VJ (1984) Growth-inhibitory and bactericidal effects of human-parotid salivary histidine-rich polypeptides on Streptococcus mutans. Infect Immun 44:695–701

    CAS  Google Scholar 

  131. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  Google Scholar 

  132. Maisetta G, Batoni G, Esin S, Luperini F, Pardini M, Bottai D, Florio W, Giuca MR, Gabriele M, Campa M (2003) Activity of human beta-Defensin 3 alone or combined with other antimicrobial agents against oral bacteria. Antimicrob Agents Chemother 47:3349–3351

    Article  CAS  Google Scholar 

  133. Malkoski M, Dashper SG, O’Brien-Simpson NM, Talbo GH, Macris M, Cross KJ, Reynolds EC (2001) Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob Agents Chemother 45:2309–2315

    Article  CAS  Google Scholar 

  134. Margulis L (1996) Archaeal-eubacterial mergers in the origin of eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 93:1071–1076

    Article  CAS  Google Scholar 

  135. Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38:204–211

    Article  CAS  Google Scholar 

  136. Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149:279–294

    Article  CAS  Google Scholar 

  137. Martini SE (1988) Antimicrobial properties of peptides from Xenopus granular gland secretions. FEBS Lett 228:337–340

    Article  Google Scholar 

  138. Marynka PY (2006) Acyl-substituted dermaseptin S4 derivatives with improved bactericidal properties, including on oral microflora. Antimicrob Agents Chemother 50:4153–4160

    Article  CAS  Google Scholar 

  139. Maze JS (2004) Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 42:1024–1029

    Article  CAS  Google Scholar 

  140. McClerren AL, Cooper LE, Quan C (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103:17243–17248

    Article  CAS  Google Scholar 

  141. McConville P; inventor; AMBI, Inc., assignee (1996) A chewing gum composition containing a bacteriocin antibacterial agent. WIPO WO 97/06772. 1996 Aug 19

  142. McConville P, Scott B, Mike P, inventors; AMBI, Inc., assignee (1996) Compositions containing nisin. WIPO WO 96/037181. 1996 May 22

  143. McKay MS, Olson E, Hesla MA, Panyutich A, Ganz T, Perkins S, Rossomando EF (1999) Immunomagnetic recovery of human neutrophil defensins from the human gingival crevice. Oral Microbiol Immunol 14:190–193

    Article  CAS  Google Scholar 

  144. Metzger ZN (1995) The tetracyclic lantibiotic actagardine: 1H-NMR and 13C-NMR assignments and revised primary structure. Eur J Biochem 228:786–797

    Article  Google Scholar 

  145. Mickels N, McManus C, Massaro J, Friden P, Braman V, D’Agostino R, Oppenheim F, Warbington M, Dibart S, van Dyke T (2001) Clinical and microbial evaluation of a histatin-containing mouthrinse in humans with experimental gingivitis. J Clin Periodontol 28:404–410

    Article  CAS  Google Scholar 

  146. Milenkovic PE (2010) Structural characterization and antimicrobial activity of the Zn(II) complex with P113 (Demegen), a derivative of histatin 5. Inorg Chem 49:8690–8698

    Article  CAS  Google Scholar 

  147. Monsieurs DG (2004) Screening genomes of Gram-positive bacteria for double-glycine-motif containing peptides. Microbiology 150:1121–1126

    Article  Google Scholar 

  148. Montville CJ (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  Google Scholar 

  149. Moore A (2003) The big and small of drug discovery. Biotech versus pharma: advantages and drawbacks in drug development. EMBO Rep 4:114–117

    Article  CAS  Google Scholar 

  150. Mor RS (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta Biomembr 1788:1582–1592

    Article  CAS  Google Scholar 

  151. Morency HT (1995) Preliminary grouping of mutacins. Can J Microbiol 41:826–831

    Article  CAS  Google Scholar 

  152. Morency H, Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC (2001) Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Can J Microbiol 47:322–331

    Article  CAS  Google Scholar 

  153. Mota-Meira M, Lacroix C, LaPointe G, Lavoie MC (1997) Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett 410:275–279

    Article  CAS  Google Scholar 

  154. Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC (2000) MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44:24–29

    Article  CAS  Google Scholar 

  155. Mota-Meira M, Morency HLM (2005) In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 56:869–871

    Article  CAS  Google Scholar 

  156. Na DH, Faraj J, Capan Y, Leung KP, DeLuca PP (2005) Chewing gum of antimicrobial decapeptide (KSL) as a sustained antiplaque agent: preformulation study. J Controlled Release 107:122–130

    Article  CAS  Google Scholar 

  157. Nagasawa YT (2003) Epsilon-Poly-l-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62:21–26

    Article  CAS  Google Scholar 

  158. Navaratna MADB, Sahl HG, Tagg JR (1999) Identification of genes encoding two-component lantibiotic production in Staphylococcus aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect Immun 67:4268–4271

    CAS  Google Scholar 

  159. Nguyen T, Zhang Z, Huang I, Wu C, Merritt J, Shi W, Qi F (2009) Genes involved in the repression of mutacin I production in Streptococcus mutans. Microbiology 155:551–556

    Article  CAS  Google Scholar 

  160. Nibbering PH, Ravensbergen E, Welling MM, van Berkel LA, van Berkel PH, Pauwels EK, Nuijens JH (2001) Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun 69:1469–1476

    Article  CAS  Google Scholar 

  161. Norberg S, O’Connor PM, Stanton C, Ross RP, Hill C, Fitzgerald GF, Cotter PD (2011) Altering the composition of caseicins A and B as a means of determining the contribution of specific residues to antimicrobial activity. Appl Env Microbiol 77:2496–2501

    Article  CAS  Google Scholar 

  162. Novak J, Caufield PW, Miller EJ (1994) Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans. J Bacteriol 176:4316–4320

    CAS  Google Scholar 

  163. Oman TJ, van der Donk WA (2009) Insights into the mode of action of the two-peptide lantibiotic Haloduracin. ACS Chem Biol 4:865–874

    Article  CAS  Google Scholar 

  164. Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472–7477

    Google Scholar 

  165. Oppenheim FG, Yang YC, Diamond RD, Hyslop D, Offner GD, Troxler RF (1986) The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. J Biol Chem 261:1177–1182

    CAS  Google Scholar 

  166. Opus Health Care AB (2011) Zendium. Retrieved Apr 5, 2011, from http://www.opushc.se/

  167. Oragenics Inc (2011) Retrieved Apr 3, 2011, from http://www.oragenics.com/

  168. Oren SY (2001) From “carpet” mechanism to de novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22:1629–1641

    Article  Google Scholar 

  169. Oudhoff MJ, Blaauboer ME, Nazmi K, Scheres N, Bolscher JGM, Veerman ECI (2010) The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem 391:541–548

    Article  CAS  Google Scholar 

  170. Oudhoff MJ, Bolscher JGM, Nazmi K, Kalay H, van’t Hof W, Amerongen AVN, Veerman ECI (2008) Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB Journal 22:3805–3812

    Article  CAS  Google Scholar 

  171. Pacgen Biopharmeceuticals Corporation (2011) PAC113. Retrieved Apr 5, 2011, from http://www.pacgenbiopharm.com/

  172. Paik SH, Chakicherla A, Hansen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, Sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142

    Article  CAS  Google Scholar 

  173. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  Google Scholar 

  174. Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun 218:408–413

    Article  CAS  Google Scholar 

  175. Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250

    Article  CAS  Google Scholar 

  176. Patel MM, inventor; WM Wrigley Jr Co., assignee (1995) Chewing gum products containing nisin and methods of preparation. WIPO WO 97/20473. 1995 Jan 12

  177. Payne JB, Iacono VJ, Crawford IT, Lepre BM, Bernzweig E, Grossbard BL (1991) Selective effects of histidine-rich polypeptides on the aggregation and viability of Streptococcus mutans and Streptococcus sanguis. Oral Microbiol Immunol 6:169–176

    Google Scholar 

  178. Peters BM, Zhu J, Fidel PL Jr, Scheper MA, Hackett W, El Shaye S, Jabra-Rizk M (2010) Protection of the oral mucosa by salivary histatin-5 against Candida albicans in an ex vivo murine model of oral infection. FEMS Yeast Res 10:597–604

    CAS  Google Scholar 

  179. Petersen PE (2003) The World Oral Health Report 2003: continuous improvement of oral health in the 21st century—the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 31:3–24

    Article  Google Scholar 

  180. Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989

    Article  CAS  Google Scholar 

  181. Pollock JJ, Denepitiya L, MacKay BJ, Iacono VJ (1984) Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun 44:702–707

    CAS  Google Scholar 

  182. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691

    Article  CAS  Google Scholar 

  183. Qi FX, Chen P, Caufield PW (2000) Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229

    Article  CAS  Google Scholar 

  184. Qi F, Chen P, Caufield PW (2001) The Group I Strain of Streptococcus mutans, UA140, produces both the lantibiotic Mutacin I and a nonlantibiotic bacteriocin, Mutacin IV. Appl Env Microbiol 67:15–21

    Article  CAS  Google Scholar 

  185. Qi F, Chen P (1999) Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Env Microbiol 65:3880–3887

    CAS  Google Scholar 

  186. Raj PA, Antonyraj KJ, Karunakaran T (2000) Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem J 347(Pt 3):633–641

    Google Scholar 

  187. Rennie J, Arnt L, Tang H, Nüsslein K, Tew GN (2005) Simple oligomers as antimicrobial peptide mimics. J Ind Microbiol Biotechnol 32:296–300

    Article  CAS  Google Scholar 

  188. Robson CL, Wescombe PA, Klesse NA (2007) Isolation and partial characterization of the Streptococcus mutans type AII lantibiotic mutacin K8. Microbiology 153:t5–t41

    Article  CAS  Google Scholar 

  189. Rollema HS, Kuipers OP, Both P, de Vos WM, Siezen RJ (1995) Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl Env Microbiol 61:2873–2878

    CAS  Google Scholar 

  190. Román Luque-Ortega J, van’t Hof W, Veerman ECI, Saugar JM, Rivas L (2008) Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmani. FASEB J 22:1817–1828

    Article  CAS  Google Scholar 

  191. Ross AC, Vederas JC (2011) Fundamental functionality: recent developments in understanding the structure-activity relationships of lantibiotic peptides. J Antibiot 64:27–34

    Article  CAS  Google Scholar 

  192. Ross HM (2006) Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl Env Microbiol 72:2260–2264

    Article  CAS  Google Scholar 

  193. Rothstein DM, Spacciapoli P, Tran LT, Xu T, Roberts FD, Dalla Serra M, Buxton DK, Oppenheim FG, Friden P (2001) Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45:1367–1373

    Article  CAS  Google Scholar 

  194. Ruissen ALA, Groenink J, Lommerse CH (2002) Effects of carbohydrate polymers applicable in saliva substitutes on the anti-Candida activity of a histatin-derived peptide. Arch Oral Biol 47:749–756

    Article  CAS  Google Scholar 

  195. Ruissen GJ (2003) Degradation of antimicrobial histatin-variant peptides in Staphylococcus aureus and Streptococcus mutans. J Dent Res 82:753–757

    Article  Google Scholar 

  196. Ryan MO (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Env Microbiol 64:439–445

    Google Scholar 

  197. Ryan M, Rea M, Hill C, Ross R (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62:612–619

    CAS  Google Scholar 

  198. Sajjan US, Tran LT, Sole N, Rovaldi C, Akiyama A, Friden PM, Forstner JF, Rothstein DM (2001) P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrob Agents Chemother 45:3437–3444

    Article  CAS  Google Scholar 

  199. Scheie AA (1994) Mechanisms of dental plaque formation. Adv Dent Res 8:246–253

    CAS  Google Scholar 

  200. Schmidt NW, Mishra A, Lai GH, Davis M, Sanders LK, Tran D, Garcia A, Tai KP, McCray PB, Ouellette AJ, Selsted ME, Wong GCL (2011) Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J Am Chem Soc 133:6720–6727

    Article  CAS  Google Scholar 

  201. Schneider BT (2009) Influence of Ca2+ ions on the activity of lantibiotics containing a mersacidin-like lipid ii binding motif. Appl Environ Microbiol 75:4427–4434

    Article  CAS  Google Scholar 

  202. Schroeder BJ, Wu Z, Buding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Strange EF, Wehkamp J (2011) Reduction of disulphide bonds unmask potent antimicrobial activity of human β-defensin 1. Nature 469:419–423

    Article  CAS  Google Scholar 

  203. Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292–4295

    CAS  Google Scholar 

  204. Shai PN (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24:1693–1703

    Article  CAS  Google Scholar 

  205. Shimotoyodome A, Kobayashi H, Tokimitsu I, Matsukubo T, Takaesu Y (2006) Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces. Caries Res 40:403–411

    Article  CAS  Google Scholar 

  206. Simmonds RS, Naidoo J, Jones CL (1995) The streptococcal bacteriocin-like inhibitory substance, zoocin A, reduces the proportion of Streptococcus mutans in an artificial plaque. Microb Ecol Health Dis 8:281–292

    Article  Google Scholar 

  207. Siqueira WL, Margolis HC, Helmerhorst EJ, Mendes FM, Oppenheim FG (2010) Evidence of intact histatins in the in vivo acquired enamel pellicle. J Dent Res 89:626–630

    Article  CAS  Google Scholar 

  208. Skerlavaj RD (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 263:9573–9575

    Google Scholar 

  209. Slade PD (1975) Production and properties of an extracellular bacteriocin from Streptococcus mutans bacteriocidal for group A and other streptococci. Infect Immun 12:1375–1385

    Google Scholar 

  210. Snyder OL (2005) Chimeric antimicrobial peptides exhibit multiple modes of action. Int J Pept Res Ther 11:29–42

    Article  CAS  Google Scholar 

  211. Stallmann HP, Faber C, Bronckers ALJJ, de Blieck-Hogervorst JMA, Brouwer CPJM, Amerongen AVN, Wuisman PIJM (2005) Histatin and lactoferrin derived peptides: antimicrobial properties and effects on mammalian cells. Peptides 26:2355–2359

    Article  CAS  Google Scholar 

  212. Steinberg AH (2006) In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J Antimicrob Chemother 58:198–201

    Article  Google Scholar 

  213. Stevens KA, Sheldon BW, Klapes A (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57:3613–3615

    CAS  Google Scholar 

  214. Sugishita MK (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37:11856–11863

    Article  Google Scholar 

  215. Sugiyama K, Sugiyama K (1993) Anti-lipopolysaccharide activity of histatins, peptides from human saliva. Experientia 49:1095–1097

    Article  CAS  Google Scholar 

  216. Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074

    Article  CAS  Google Scholar 

  217. Tagg JR, Bannister LV (1979) “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol 12:397–411

    Article  CAS  Google Scholar 

  218. Takeshita MY (1990) Inhibitory effects of synthetic histidine-rich peptides on haemagglutination by Bacteroides gingivalis 381. Arch Oral Biol 35:775–777

    Article  Google Scholar 

  219. Tanzer JM, Livingston JTA (2001) The microbiology of primary dental caries in humans. J Dent Educ 65:1028–1037

    CAS  Google Scholar 

  220. Tao RC, Jurevic RJ, Coulton KK (2005) Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother 49:3883–3888

    Article  CAS  Google Scholar 

  221. Tew GN, Clements D, Tang H, Arnt L, Scott RW (2006) Antimicrobial activity of an abiotic host defense peptide mimic. Biochim Biophys Acta 1758:1387–1392

    Article  CAS  Google Scholar 

  222. Thellade E (1986) The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 13:905–911

    Article  Google Scholar 

  223. Thomas LV, Wimpenny JWT (1996) Investigation of the effect of combined variations in temperature, pH, and NaCl concentration on nisin inhibition of Listeria monocytogenes and Staphylococcus aureus. Appl Environ Microbiol 62:2006–2012

    CAS  Google Scholar 

  224. Tong ZC, Dong LP, Zhou L (2010) Nisin inhibits dental caries-associated microorganism in vitro. Peptides 31:2003–2008

    Article  CAS  Google Scholar 

  225. Travis GH (2001) Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect Immun 69:1402–1408

    Article  Google Scholar 

  226. Troxler RF, Offner GD, Xu T, Vanderspek JC, Oppenheim FG (1990) Structural relationship between human salivary histatins. J Dent Res 69:2–6

    Article  CAS  Google Scholar 

  227. Van NA, Bolscher JGM, Veerman ECI (2004) Salivary proteins: protective and diagnostic value in cariology? Caries Res 38:247–253

    Article  CAS  Google Scholar 

  228. Vargues T, Morrison GJ, Seo ES, Clarke DJ, Fielder HL, Bennani J, Pathania U, Kilanowski F, Dorin JR, Govan JRW, Mackay CL, Uhrín D, Campopiano DJ (2009) Efficient production of human β-Defensin 2 (HBD2) in Escherichia coli. Protein Pept Lett 16:668–676

    Article  CAS  Google Scholar 

  229. Wade W (1999) Unculturable bacteria in oral biofilms. In: Newman HN, Wilson M (eds) Dental plaque revisited: oral biolfilms in health and diseases. BioLine, Cardiff, p 313

  230. Wade WG, Munson MA, de Lillo A, Weightman AJ (2005) Specificity of the oral microflora in dentinal caries, endodontic infections and periodontitis. Int Congr Ser 1284:150–157

    Article  CAS  Google Scholar 

  231. Wang LY (2011) Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. Int J Antimicrob Agents 37:33–38

    Article  CAS  Google Scholar 

  232. Wei GX, Campagna AN, Bobek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57:1100–1109

    Article  CAS  Google Scholar 

  233. Welling MM, Brouwer CP, van’t Hof W W, Veerman EC, Amerongen AV (2007) Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicro Agents Chemother 51:3416–3419

    Article  CAS  Google Scholar 

  234. Wieprecht DM (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87

    Article  Google Scholar 

  235. Wierenga RR (2007) Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl Env Microbiol 73:5809–5816

    Article  CAS  Google Scholar 

  236. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501

    Article  CAS  Google Scholar 

  237. Wilson CN (2009) Rapid method for extracting the antibiotic mutacin 1140 from complex fermentation medium yeast extract. Can J Microbiol 55:1261–1266

    Article  CAS  Google Scholar 

  238. Wirawan RE, Klesse NA, Jack RW, Tagg JR (2006) Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl Env Microbiol 72:1148–1156

    Article  CAS  Google Scholar 

  239. Yasufuku OT (1985) Effect of mutacin administration on Streptococcus mutans-induced dental caries in rats. Microbiol Immunol 29:1163–1173

    Google Scholar 

  240. Yeaman MR, Yount N (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  Google Scholar 

  241. Zachariah SL (2003) Structure and dynamics of the lantibiotic mutacin 1140. Biochemistry 42:10372–10384

    Article  CAS  Google Scholar 

  242. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  CAS  Google Scholar 

  243. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  CAS  Google Scholar 

  244. Zasloff MD (1988) A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett 227:21–26

    Article  Google Scholar 

  245. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  Google Scholar 

  246. Zero DT, Fontana M, Martínez-Mier EA (2009) The biology, prevention, diagnosis, and treatment of dental caries. Scientific advances in the United States. J Am Dent Assoc 140:25S–34S

    CAS  Google Scholar 

  247. Zuo DJ (1995) Functional comparison of native and recombinant human salivary histatin 1. J Dent Res 74:1837–1844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Chikindas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pepperney, A., Chikindas, M.L. Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics & Antimicro. Prot. 3, 68–96 (2011). https://doi.org/10.1007/s12602-011-9076-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-011-9076-5

Keywords

Navigation