Skip to main content
Log in

Human tumor cells are selectively inhibited by colicins

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The activityin vitro of four types of colicins (A, E1, E3, U) against one human standard fibroblast line and against 11 human tumor-cell lines carrying defined mutations of thep53 gene was quantified by MTT (tetrazolium bromide) assay. Flow cytometry showed that the pore-forming colicins A, E1 and U affected the cell cycle of 5 of these cell lines. Colicins E3 and U did not show any distinct inhibitory effects on the cell lines, while colicins E1 and especially A inhibited the growth of all of them (with one exception concerning colicin E1). Colicin E1 inhibited the growth of the tumor lines by 17–40% and standard fibroblasts MRC5 by 11%. Colicin A exhibited a differentiated 16–56% inhibition, the growth of standard fibroblasts being inhibited by 36%. In three of the lines, colicins A and E1 increased the number of cells in the G1 phase (by 12–58%) and in apoptosis (by 7–58%). These results correlated with the data from sensitivity assays. Hence, the inhibitory effect of colicins on eukaryotic cells is cell-selective, colicin-specific and can be considered to be cytotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Farkas-Himsley H., Cheung R.: Bacterial proteinaceous products (bacteriocins) as cytotoxic agent of neoplasia.Cancer Res.36, 3561–3567 (1976).

    PubMed  CAS  Google Scholar 

  • Farkas-Himsley H., Musclow C.E.: Bacteriocin receptors on malignant mammalian cells: are they transferrin receptors?Cell Mol. Biol.32, 607–617 (1986).

    PubMed  CAS  Google Scholar 

  • Farkas-Himsley H., Musclow C.E., Weitzman S.S., Herridge M.: Acute lymphoblastic leukemia of childhood monitored by bacteriocin and flow cytometry.Eur.J.Cancer Clin.Oncol.23, 411–418 (1987).

    Article  PubMed  Google Scholar 

  • Lauková A., Mareková M.: Production of bacteriocins by different enterococcal isolates.Folia Microbiol.46, 49–52 (2001).

    Article  Google Scholar 

  • Levine A.J.:p53, the cellular gatekeeper for growth and division.Cell88, 323–331 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lokaj J., Šmarda J., Mach J.: Colicin E3 enhances the oxidoreductive activity of guinea-pig leukocytes.Experientia38, 1352–1353 (1982).

    Article  CAS  Google Scholar 

  • Mercer W.E.: Checking on the cell cycle.J.Cell Biochem.31 (Suppl.), 50–54 (1998).

    Article  Google Scholar 

  • Morovský M., Pristaš P., Javorský P.: Bacteriocins of ruminal bacteria.Folia Microbiol.46, 61–62 (2001).

    Article  Google Scholar 

  • Pestell K.E., Medlow C.J., Titley J.C., Kelland L.R., Walton M.I.: Characterization of thep53 status, BCL-2 expression and radiation and platinum drug sensitivity of a panel of human ovarian cancer cell lines.Internat.J.Cancer77, 913–918 (1998).

    Article  CAS  Google Scholar 

  • Saito H., Watanabe T.: Effect of bacteriocin produced byMycobacterium smegmatis on growth of cultured tumor and normal cells.Cancer Res.39, 5114–5117 (1979).

    PubMed  CAS  Google Scholar 

  • Schafer K.A.: The cell cycle: a review.Vet.Pathol.35, 461–478 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Šmarda J.: The action of colicins on eukaryotic cells.J.Toxicol.Toxin Rev.2, 1–76 (1983).

    Google Scholar 

  • Šmarda J., Macholán L.: Binding domains of colicins E1, E2 and E3 in the receptor protein BtuB ofEscherichia coli.Folia Microbiol.45, 379–386 (2000).

    Article  Google Scholar 

  • Šmarda J., Oravec C.: Cytocidal effect of bacteriocins toward lymphatic cells. (In Czech)Aktual.Klin.Onkol.21, 209–212 (1989).

    Google Scholar 

  • Šmarda J., Schuhmann E.: Studies of colicin action on wall-less stable L-forms ofEscherichia coli — I. Degree of attachment and of killing effect on rods and stable L-form cells.Z.Allg.Mikrobiol.19, 511–516 (1979).

    Article  PubMed  Google Scholar 

  • Šmarda J., Šmajs D.: Colicins — exocellular lethal proteins ofEscherichia coli.Folia Microbiol.43, 563–582 (1998).

    Article  Google Scholar 

  • Šmarda J., Obdržálek V., Táborský I., Mach J.: The cytotoxic and cytocidal effect of colicin E3 on mammalian tissue cells.Folia Microbiol.23, 272–277 (1978).

    Article  Google Scholar 

  • Šmarda J., Fialová M., Šmarda J. Jr.: Cytotoxic effects of colicins E1 and E3 onv-myb-transformed chicken monoblasts.Folia Biol.47, 11–13 (2001).

    Google Scholar 

  • Šmarda J., Matějková P., Vavříčková A.: Translocation of colicin from the receptor to the inner cell membrane: function of the peptidoglycan layer.Folia Microbiol.47, 213–217 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chumchalová.

Additional information

This work was supported by grant no. 310/98/0083 of theGrant Agency of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chumchalová, J., Šmarda, J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol 48, 111–115 (2003). https://doi.org/10.1007/BF02931286

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931286

Keywords

Navigation