Skip to main content

Abstract

Heterosis, or hybrid vigor, represents one of the greatest contributions of genetics to the improvement of major crops such as maize and rice, which is intensively studied and exploited by breeders and seed companies worldwide. The exploitation of distant heterosis is a promising way to further raise the yield potential of crops. This review describes aspects of the genetic basis for heterosis, diversification of rice and its related species, principles and methodologies for exploiting distant heterosis in hybrid rice breeding. Both promises and constraints are discussed for understanding the importance and difficulties of distant heterosis utilization. Progress of distant heterosis is demonstrated by the intersubspecific heterosis between two subspecies of Asian rice (Oryza sativa L.), ssp. indica and ssp. japonica, and the interspecific heterosis between two cultivated species, Asian rice and African rice (O. glaberrima Steud.). Strategies of using the doubled haploid method and molecular genetics approaches are suggested for accelerating distant heterosis breeding, eliminating sterility loci to overcome the hybrid sterility of distant crosses, and identifying and pyramiding QTLs of distant heterotic loci and favorable genes to develop a more typical intersubspecific hybrid rice with higher ratio of indica/japonica heterozygotic loci, and to create a more adaptive and productive partial interspecific hybrid rice incorporating sativa/glaberrima heterozygotic loci and favorable genes from the two cultivated species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebrese SO, Akromah R, Dartey PKA (2011) Crossability of selected progeny from interspecific crosses between Oryza sativa and Oryza glaberrima (NERICAs). Afr J Agric Res 6(1):79–83

    Google Scholar 

  • Adedze Y, Efisue A, Zhang S et al (2012) Identification of interspecific grain yield heterosis between two cultivated rice species Oryza sativa L. and Oryza glaberrima Steud. Aust J Crop Sci 6(11):1558–1564

    Google Scholar 

  • Africarice. http://www.africarice.org/. Accessed 8 Jan 2015

  • Agnoun Y, Biaou S, Sié M, Djedatin G et al (2012) The African rice Oryza glaberrima Steud: knowledge distribution and prospects. Int J Biol 4(3):158–180

    Google Scholar 

  • Alemanno L, Guiderdoni E (1994) Increased doubled haploid plant regeneration from rice (Oryza sativa L.) anthers cultured on colchicine-supplemented media. Plant Cell Rep 13:432–436

    Article  CAS  PubMed  Google Scholar 

  • Aluko GK (2003) Genetic mapping of agronomic traits from the interspecific cross of Oryza sativa (L.) and Oryza glaberrima (Steud). PhD dissertation, Louisiana State University and Agricultural and Mechanical College

    Google Scholar 

  • Andrea LS, Willis JH (2012) Molecular evolution and genetics of postzygotic reproductive isolation in plants. Biol Rep 4:23. doi:10.3410/B4-23

    Google Scholar 

  • Barry MB, Pham JL, Noyer JL et al (2007) Genetic diversity of the two cultivated rice species (O. sativa & O. glaberrima) in Maritime Guinea. Euphytica 154(1–2):127–137

    Article  CAS  Google Scholar 

  • Bimpong IK, Carpena AK, Mendioro MS et al (2010) Evaluation of Oryza sativa x Oryza glaberrima derived progenies for resistance to rootknot nematode and identification of introgressed alien chromosome segments using SSR markers. Afr J Biotechnol 9(26):3988–3997

    CAS  Google Scholar 

  • Bimpong IK, Chin JH, Ramos J, Koh HJ (2011) Application of subspecies-specific marker system identified from Oryza sativa to Oryza glaberrima accessions and Oryza sativa x Oryza glaberrima F1 interspecific progenies. Int J Genet Mol Biol 3(1):7–24

    CAS  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32(827):627–628

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Reiko M, Suguru T et al (2003) Polyphyletic origin of cultivated rice: Based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Li YC, Jie YZ et al (2007) Super hybrid rice breeding in China: achievements and prospects. J Integr Plant Biol 49(6):805–810

    Article  CAS  Google Scholar 

  • Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33(5):477–487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darwin CR (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London

    Book  Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28(718):454–455

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky TH (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Du H, Ouyang Y, Zhang C, Zhang Q (2011) Complex evolution of S5, a major reproductive barrier regulator, in the cultivated rice Oryza sativa and its wild relatives. New Phytol 191(1):275–287

    Article  CAS  PubMed  Google Scholar 

  • Efisue AA, Tongoona P, Derera J (2009a) Screening early-generation progenies of interspecific rice genotypes for drought-stress tolerance during vegetative phase. J Crop Improv 23(2):174–193

    Article  CAS  Google Scholar 

  • Efisue AA, Tongoona P, Derera J et al (2009b) Genetics of morpho-physiological traits in segregating populations of interspecific hybrid rice under stress and non-stress conditions. J Crop Improv 23(4):383–401

    Article  CAS  Google Scholar 

  • Fu DH, Xiao ML, Hayward A et al (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173

    Article  Google Scholar 

  • Gao LZ, Innan H (2008) Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. Japonica, demonstrated by multilocus microsatellites. Genetics 179(2):965–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Gramene. http://archive.gramene.org/species/oryza/rice_intro.html. Accessed 8 Jan 2015

  • Groszmann M, Greaves IK, Fujimoto R et al (2013) The role of epigenetics in hybrid vigour. Trends Genet 29(12):684–690

    Article  CAS  PubMed  Google Scholar 

  • Gueye T, Ndir KN (2010) In vitro production of double haploid plants from two rice species (Oryza sativa L. and Oryza glaberrima Steud.) for the rapid development of new breeding material. Sci Res Essay 5(7):709–713

    Google Scholar 

  • Gutierrez AG, Silvio JC, Olga XG et al (2010) Identification of a rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa X O. glaberrima introgression lines. Plant Bio 10:6. doi: 10.1186/1471-2229-10-6

  • Guyot R, Garavito A, Gavory F et al (2011) Patterns of sequence divergence and evolution of the S1 orthologous regions between Asian and African cultivated rice species. PLoS ONE 6(3). doi:10.1371/journal.pone.001772

  • Heuer S, Miezan KM (2003) Assessing hybrid sterility in Oryza glaberrima x O. sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties. Theor Appl Genet 107(5):902–909

    Article  CAS  PubMed  Google Scholar 

  • He YX, Zheng TQ, Hao XB et al (2010) Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding program. Plant Breed 129:167–175

    Article  Google Scholar 

  • Hiroko M, Hinata K, Oka HI (1962) Comparison between two cultivated rice species Oryza sativa L. and Oryza glaberrima Steud. Jpn J Breed 12:153–165, English with Japanese summary

    Article  Google Scholar 

  • Hu FY, Xu P, Deng XN et al (2006) Molecular mapping of a pollen killer gene S29 (t) in Oryza glaberrima and co-linear analysis with S22 in O. glumaepatula. Euphytica 151(3):273–278

    Article  CAS  Google Scholar 

  • Hua JP, Xing YZ, Wu WR et al (2003) Single-locus heterotic effects and dominance-by-dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Nat Acad Sci 100(5):2574–2579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang F, Fu X, Efisue A et al (2012) Genetically characterizing a new indica cytoplasmic male sterility with Oryza glaberrima cytoplasm for its potential use in hybrid rice production. Crop Sci 53:132–140

    Article  Google Scholar 

  • Hull FH (1945) Recurrent selection for specific combining ability in corn. J Am Soc Agron 37(2):134–145

    Article  Google Scholar 

  • Ikeda R, Yoshimi S, Inouss A (2009) Seed fertility of F1 hybrids between upland rice NERICA cultivars and Oryza sativa L. or O. glaberrima Steud. Breed Sci 59:27–35

    Article  Google Scholar 

  • Ikehashi H (2009) Why are there indica type and japonica type in rice?--history of the studies and a view for origin of two types. Rice Sci 16(1):1–13

    Article  Google Scholar 

  • Ikehashi H, Araki H (1984) Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed 34:304–313

    Article  Google Scholar 

  • Ikehashi H, Araki H (1986) Genetics of F1 sterility in remote crosses of rice. Rice Genet (International Rice Research Institute, Manila), pp 119–130

    Google Scholar 

  • Jaikishan I, Rajendrakumar P, Ramesha MS et al (2010) Prediction of heterosis for grain yield in rice using key informative EST-SSR. Plant Breed 129(1):108–111

    Article  CAS  Google Scholar 

  • Ji Q, Lu J, Chao Q et al (2005) Delimiting a rice wide-compatibility gene S5n to a 50 kb region. Theor Appl Genet 111(8):1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu L (2006) New evidence for the origins of sedentism and rice domestication in the lower Yangzi River, China. Antiquity 80(308):355–361

    Article  Google Scholar 

  • Jin DM, Li ZB, Wan JM (1987) The use and value of photoperiod-sensitive gene in rice breeding. Sci Agric Sin 20(1):6–12

    Google Scholar 

  • Jin DM, Efisue AA, Zhang SS et al (2012) Developing a new indica CMS system and introgression restorer lines via interspecific crosses between Oryza glaberrima Steud and Oryza sativa L. Abstract presented at the International Conference on Utilization of Heterosis in Crops, Xi’an, pp 264–265

    Google Scholar 

  • Jones DF (1918) The effects of inbreeding and crossbreeding on development. PNAS 4(8):246–250

    Google Scholar 

  • Jones JW (1926) Hybrid vigour in rice. J Am Soc Agr 18(5):423–428

    Article  Google Scholar 

  • Jones MP, Dingkuhn M, Johnson DE, Sow A (1998) Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crop Res 57(1):57–69

    Article  Google Scholar 

  • Kölreuter JG (1761) Vorläufige nachricht von einigen, das geschlecht der pflanzen betreffenden versuchen und beobachtungen. In der gleditschischen handlung, Leipzig

    Google Scholar 

  • Kaw RN (1995) Analysis of divergence in some cold tolerant rices. Ind J Genet 55(1):84–89

    Google Scholar 

  • Katsuo K, Mizushima U (1958) Studies on the cytoplasmic difference among rice varieties, Oryza sativa L. 1. On the fertility of hybrids obtained reciprocally between cultivated and wild varieties. Jpn J Breed 8(1):1–5 (in Japanese with English summary)

    Article  Google Scholar 

  • Koide YA, Onishi K, Nishimoto D (2008) Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytol 179(3):888–900

    Article  CAS  PubMed  Google Scholar 

  • Larièpe A, Mangin B, Jasson S et al (2012) The genetic basis of the heterosis: multiparental quantitative traits loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics l90(2):795–811

    Article  Google Scholar 

  • Li Z, Pinson SRM, Paterson AH et al (1997) Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics 145(4):1139–1148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li SQ, Yang DC, Zhu YG (2007) Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol 49(6):791–804

    Article  CAS  Google Scholar 

  • Li F, Liu FH, Morinaga DZ (2011) A new gene for hybrid sterility from a cross between Oryza sativa and O. glaberrima. Plant Breed 130(2):165–171

    Article  CAS  Google Scholar 

  • Li WJ, Zhang B, Huang GW et al (2012) Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (Oryza sativa) and its wild relatives (O. rufipogon). Genet Mol Res 11(4):4418–4431

    Article  CAS  PubMed  Google Scholar 

  • Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Nat Acad Sci 99(25):16360–16365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu WM (2012) Correlation and path analysis of yield traits on ‘Yongyou12’ indica-japonica intersubspecific hybrid rice. Chin J Agric 2:1–4

    Article  Google Scholar 

  • Londo JP, Schaal BA (2007) Origins and population genetics of weedy red rice in the USA. Mol Ecol 16:4523–4535. doi:10.1111/j.1365-294X.2007.03489.x

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Zhao L, Niu B et al (2008) Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Nat Acad Sci USA 105(48):18871–18876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu YF, Ma RR, Wang XY et al (2007) SSLP—based SSR fingerprinting and indica/Japonica classification of yongyou series hybrid rice. Chin J Rice Sci 21(4):443–446

    CAS  Google Scholar 

  • Luo XJ, Li Yuan J, McCouch SR (1996) Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92:637–643

    Article  Google Scholar 

  • Luo LJ, Mei H, Yu X et al (1999) Yield heterosis performance and their parental genetic diversity in rice. Rice Sci 13(1):6–10

    Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Nat Acad Sci USA 101(34):12404–12410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahapatra KC, Mishra CHP, Acharya B (1995) Clustering of rice mutants by different methods of analysis. Ind J Genet 55(2):138–147

    Google Scholar 

  • Melchinger A, Utz HF, Piepho HP et al (2007) The role of epistasis in the manifestation of heterosis-a systems-oriented approach. Genetics 177(3):1815–1825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moehring AJ (2011) Heterozygosity and its unexpected correlations with hybrid sterility. Evolution 65(9):2621–2630

    Article  PubMed Central  PubMed  Google Scholar 

  • Molina J, Sikora M, Garud N et al (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Nat Acad Sci USA 108(20):8351–8356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biol Sym 6:71–125

    Google Scholar 

  • Murray SS (2004) Searching for the origins of African rice domestication. Antiquity 78(300):1–3

    Google Scholar 

  • Ndjiondjop MN, Futakuchi K, Seck PA et al (2012) Morpho-agronomic evaluation of Oryza glaberrima accessions and interspecific Oryza sativa X Oryza glaberrima derived lines under drought conditions. Afr J Agric Res 7(16):2527–2538

    Google Scholar 

  • Oka HI, Morishima H (1982) Phylogenetic differentiation of cultivated rice, XXIII. Potentiality of wild progenitors to evolve the indica and japonica types of rice cultivars. Euphytica 31(1):41–50

    Article  Google Scholar 

  • Phetmanyseng X, Xie F, Hernandez JE, Boirromeo TH (2010) Hybrid rice heterosis and genetic diversity of IRRI and Lao rice. Field Crop Res 117(1):18–23

    Article  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genome wide selection in maize. Crop Sci 49(4):1165–1176

    Article  Google Scholar 

  • Portères R (1962) Primary cradles of agriculture in the African continent. J Afr Hist 3:195–210

    Article  Google Scholar 

  • Powers L (1944) An expansion of Jones’s theory for the explanation of heterosis. Am Nat 78:275–280

    Article  Google Scholar 

  • Qiu SQ, Liu K, Jiang JX et al (2005) Delimitation of the rice wide compatibility gene S5n to a 40-kb DNA fragment. Theor Appl Genet 111(6):1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Reiffers I, Freire AB (1990) Production of doubled haploid rice plants (Oryza sativa L.) by anther culture. Plant Cell Tiss Org Cult 21(2):165–170

    Article  Google Scholar 

  • Saghai MMA, Yang GP, Qifa Z, Gravois KA (1997) Correlation between molecular marker distance and hybrid performance in US Southern long grain rice. Crop Sci 37(1):145–150

    Article  Google Scholar 

  • Sano Y (1986) Sterility barriers between Oryza sativa and O. glaberrima. International Rice Research Institute-Rice Genet, IRRI, Manila, pp 109–118

    Google Scholar 

  • Schön CC, Dhillon BS, Utz HF, Melchinger AE (2010) High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120(2):321–332

    Article  PubMed  Google Scholar 

  • Schrag TA, Frisch M, Dhillon BS, Melchinger AE (2009) Marker-based prediction of hybrid performance in maize single-crosses involving doubled haploids. Maydica 54(2/3):353–362

    Google Scholar 

  • Semagn K, Ndjiondjop MN, Lorieux M et al (2007) Molecular profiling of an interspecific rice population derived from a cross between WAB 56–104 (Oryza sativa) and CG 14 (Oryza glaberrima). Afr J Biol 6(17):2014–2022

    CAS  Google Scholar 

  • Sheeba NK, Viraktamath BC et al (2009) Validation of molecular markers linked to fertility restorer gene(s) for WA-CMS lines of rice. Euphytica 167(2):217–227

    Article  CAS  Google Scholar 

  • Shinjyo C (1975) Genetical studies of cytoplasmic male sterility and fertility restoration in rice, Oryza sativa L. Sci Bull Coll Agr Univ Ryukyus 22:1–57

    Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breed Ass Rep 4(1):296–301

    Google Scholar 

  • Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174(4):394–408

    Article  CAS  Google Scholar 

  • Virmani SS (1994) Heterosis and hybrid rice breeding. Springer, Berlin

    Book  Google Scholar 

  • Virmani SS, Chaudhary RC, Khush GS (1981) Current outlook on hybrid rice. Oryza 18:67–84

    Google Scholar 

  • Wang MH, Yu YS, Georg H et al (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yu C, Liu X et al (2012) Identification of indica rice chromosome segments for the improvement of japonica inbreds and hybrids. Theor Appl Genet 124(7):1351–1364

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Jiang L, Yin CB et al (2013) QTL mapping of heterotic loci of yield related traits in rice. Chin J Rice Sci 27(6):569–576

    Google Scholar 

  • West Africa Rice Development Association (2000) Potential for a green revolution in rice in west and central Africa. Report of the second biennial, M’bé, Bouaké, Côte d’Ivoire. (Now renamed Africa Rice Center)

    Google Scholar 

  • West Africa Rice Development Association (2006) Report of the 5th biennial regional consultative meeting of the national experts committee (NEC V) Cotonou, Republic of Benin, 19–20 Jun 2006 (Now renamed Africa Rice Center)

    Google Scholar 

  • Wei X, Qiao WH, Chen YT et al (2012) Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol Ecol 21(20):5073–5087

    Article  CAS  PubMed  Google Scholar 

  • Williams W (1959) Heterosis and the genetics of complex characters. Nature 184:527–530

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Li Yuan J, McCouch SR (1996) Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92(6):637–643

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Virmani SS, Hernandez JE, Sebastian LS (2002) Genetic diversity in parental line and heterosis of the tropical rice hybrids. Euphytica 127(1):139–148

    Article  CAS  Google Scholar 

  • Yang ZY, Liu WY (1991) Classification of the F1 intersubspecific hybrids between Indica and Japonica and its relation to the F1 hybrid vigor. Chin J Rice Sci 5(4):151–156

    Google Scholar 

  • Yang JY, Zhao XB, Cheng K et al (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337(6100):1336–1340

    Article  CAS  PubMed  Google Scholar 

  • Yi G, Lee HS, Kim KM (2014) Improved marker-assisted selection efficiency of multi-resistance in doubled haploid rice plants. Euphytica. doi:10.1007/s10681-014-1303-1

    Google Scholar 

  • Yuan LP (2002) Hybrid rice. China Agr Press, Beijing, China

    Google Scholar 

  • Yuan LP, Yang ZY, Yang JB (1994) Hybrid rice in China. In: Virmani SS (ed) Hybrid rice technology: new development and future prospects. International Rice Research Institute, Manila, Philippines, pp 143–147, P.O. Box 933

    Google Scholar 

  • Zhang QJ, Ting Z, Xia EH et al (2014) Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc Nat Acad Sci USA 111(46):E4954–E4962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou G, Chen Y, Yao W et al (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Nat Acad Sci USA 109(39):15847–15852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study of interspecific heterosis was funded by the Natural Science Foundation of China (NSFC: 30871703), the National High Technology Research and Development Program (863 Program) of China (2012AA101101), the Natural Science Foundation of Hubei province (2010CBB01901), and the Fundamental Research Funds for the Central Universities (2009PY025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jin, D., Nassirou, T.Y. (2015). Progress and Perspectives of Distant Heterosis in Rice. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_7

Download citation

Publish with us

Policies and ethics