Skip to main content

Phytochelatin and Oxidative Stress Under Heavy Metal Stress Tolerance in Plants

  • Chapter
Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Abstract

With the rapid developing of industry and agriculture, heavy metal pollution in environment has been both serious and widespread worldwide. To cope with adverse environmental heavy metal toxicity, plants have evolved a variety of adaptive responses, which include immobilization, exclusion, chelation, and compartmentalization of metal ions and often involve metal-binding ligands. Particularly, phytochelatins (PCs), a family of peptides, have been regarded as the best-characterized heavy metal chelators especially in detoxication of heavy metals such as cadmium (Cd) in plants and some microorganisms. Generally, PCs have the general structure (Ī³-Glu-Cys) n -Gly (nā€‰=ā€‰2ā€“11) and are produced by the enzyme phytochelatin synthases, which can bind to various metals including Cd, As Cu, or Zn. In this chapter, we focused on the biosynthesis and function of PCs and the role of PCs in metal detoxification and tolerance. Finally, the molecular biology of PCs has been briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AlcĆ”ntara E, Romera FJ, CaƱete M, Manuel D (1994) Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893ā€“1898

    ArticleĀ  Google ScholarĀ 

  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SB (2009) Induction of lead-binding phytochelatins in Vetiver Grass [(L.)]. J Environ Qual 38:868ā€“877

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2010) Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326:171ā€“185

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living azotobacter. Water Air Soil Pollut 138:165ā€“180

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 159:321ā€“324

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Baldisserotto C, Ferroni L, Anfuso E, Pagnoni A, Fasulo MP, Pancaldi S (2007) Responses of Trapa natans L. floating laminae to high concentrations of manganese. Protoplasma 231:65ā€“82

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Beauford W, Barber J, Barringer AR (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39:261ā€“265

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bingham FT, Pereyea F, Jarrell WM (1986) Metal toxicity to agricultural crops. Met Ions Biol Syst 20:119ā€“156

    CASĀ  Google ScholarĀ 

  • Boojar MMA, Tavakoli Z (2010) Role of antioxidant enzyme responses and phytochelatins in tolerance strategies of Alhagi camelorum Fisch growing on copper mine. Acta Bot Croat 69:107ā€“121

    CASĀ  Google ScholarĀ 

  • Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801ā€“803

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Burton K, Morgan E, Roig A (1984) The influence of heavy metals upon the growth of sitka-spruce in South Wales forests. Plant Soil 78:271ā€“282

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cazale AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215ā€“219

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen J, Goldsbrough PB (1994) Increased activity of Ī³-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233ā€“239

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108ā€“120

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen L, Guo Y, Yang L, Wang Q (2008) Synergistic defensive mechanism of phytochelatins and antioxidative enzymes in Brassica chinensis L. against Cd stress. Chin Sci Bull 53:1503ā€“1511

    CASĀ  Google ScholarĀ 

  • Chen CY, Huang DJ, Liu JQ (2009a) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304ā€“313

    CASĀ  Google ScholarĀ 

  • Chen L, Yang L, Wang Q (2009b) In vivo phytochelatins and Hg-phytochelatin complexes in Hg-stressed Brassica chinensis L. Metallomics 1:101ā€“106

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319ā€“332

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Clemens S, PerÅ”oh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266ā€“271

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325ā€“3333

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cobbett CS (2000a) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211ā€“216

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cobbett CS (2000b) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825ā€“832

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cobbett CS (2001) Heavy metal detoxification in plants: phytochelatin biosynthesis and function. IUBMB Life 51:183ā€“188

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159ā€“182

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322ā€“330

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Collin-Hansen C, Pedersen SA, Andersen RA, Steinnes E (2007) First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia 99:161ā€“174

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dago ƀ, GonzĆ”lez I, AriƱo C, Manuel DĆ­az-Cruz J, Esteban M (2014) Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta 118:201ā€“209

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Davies K, Davies M, Francis D (1991) The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytol 118:565ā€“570

    ArticleĀ  CASĀ  Google ScholarĀ 

  • de Knecht JA, van Dillen M, Koevoets PL, Schat H, Verkleij JA, Ernst WH (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation). Plant Physiol 104:255ā€“261

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • De Vos CH, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853ā€“858

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Demiral T, TĆ¼rkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247ā€“257

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dong R, Formentin E, Losseso C, Carimi F, Benedetti P, Terzi M, Schiavo F (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biotechnol 32:527ā€“533

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ducruix C, Junot C, Fievet JB, Villiers F, Ezan E, Bourguignon J (2006) New insights into the regulation of phytochelatin biosynthesis in A. thaliana cells from metabolite profiling analyses. Biochimie 88:1733ā€“1742

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. and C. Presl). Planta 214:635ā€“640

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Elangovan D, Chalakh M (2006) Arsenic pollution in west Bengal. Tech Digest 9:31ā€“35

    Google ScholarĀ 

  • Estrella-GĆ³mez N, Mendoza-Cozatl D, Moreno-Sanchez R, Gonzalez-Mendoza D, Zapata-Perez O, Martinez-Hernandez A, Santamaria JM (2009) The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquat Toxicol 91:320ā€“328

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Figueira E, Freitas R, Guasch H, Almeida SP (2014) Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (KĆ¼tzing) W. Smith. Ecotoxicology 23:285ā€“292

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Figueroa JAL, Wrobel K, Afton S, Caruso JA, Felix Gutierrez Corona J, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084ā€“2091

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303ā€“321

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gaur J, Rai L (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Springer, Berlin

    Google ScholarĀ 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44:361ā€“369

    CASĀ  Google ScholarĀ 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118ā€“10123

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306ā€“314

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674ā€“676

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439ā€“443

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Grill E, Thumann J, Winnacker EL, Zenk MH (1988) Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep 7:375ā€“378

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838ā€“6842

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gupta M, Rai U, Tripathi R, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (lf) Royle. Chemosphere 30:2011ā€“2020

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gupta M, Tripathi RD, Rai UN, Chandra P (1998) Role of glutathione and phytochelatin in Hydrilla verticillata (lf) Royle and Vallisneria spiralis L. under mercury stress. Chemosphere 37:785ā€“800

    Google ScholarĀ 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, Oā€™Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153ā€“1163

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827ā€“1835

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Haghiri F (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. J Environ Qual 3:180ā€“183

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1ā€“11

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593ā€“599

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995a) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067ā€“1073

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995b) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059ā€“1066

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Iglesia-Turino S, Febrero A, Jauregui O, Caldelas C, Araus JL, Bort J (2006) Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury. Plant Physiol 142:742ā€“749

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65ā€“78

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M (2000) Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol 123:1029ā€“1036

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Khabaz-Saberi H, Rengel Z, Wilson R, Setter TL (2010) Variation of tolerance to manganese toxicity in Australian hexaploid wheat. J Plant Nutr Soil Sci 173:103ā€“112

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(Ī³-glutamylcysteine) n-serine] are metal-induced peptides of the poaceae. Plant Physiol 104:1325ā€“1332

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107:515ā€“521

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663ā€“2667

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y (1984) Cadystin a and b, major unit peptides comprising cadmium binding peptides induced in a fission yeastā€”separation, revision of structures and synthesis. Tetrahedron Lett 25:3869ā€“3872

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115:1641ā€“1650

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kubota H, Sato K, Yamada T, Maitani T (2000) Phytochelatin homologs induced in hairy roots of horseradish. Phytochemistry 53:239ā€“245

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656ā€“663

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lei Y, Chen K, Tian X, Korpelainen H, Li C (2007) Effect of Mn toxicity on morphological and physiological changes in two Populus cathayana populations originating from different habitats. Trees 21:569ā€“580

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323ā€“1328

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lewis S, Donkin M, Depledge M (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277ā€“291

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of Ī³-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288ā€“298

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liang G, Liao X, Du G, Chen J (2009) A new strategy to enhance glutathione production by multiple H2O2-induced oxidative stresses in Candida utilis. Bioresour Technol 100:350ā€“355

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lindberg S, Landberg T, Greger M (2007) Cadmium uptake and interaction with phytochelatins in wheat protoplasts. Plant Physiol Biochem 45:47ā€“53

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu WT, Zhou QX, An J, Sun YB, Liu R (2010a) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737ā€“743

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu WT, Zhou QX, Zhang YL, Wei SH (2010b) Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. J Environ Manage 91:781ā€“788

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu GY, Zhang YX, Chai TY (2011a) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067ā€“1076

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu WT, Zhou QX, Zhang ZN, Hua T, Cai Z (2011b) Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. J Agric Food Chem 59:8324ā€“8330

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu WT, Ni JC, Zhou QX (2013) Uptake of heavy metals by trees: prospects for phytoremediation. Mater Sci Forum 743ā€“744:768ā€“781

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu W, Liang L, Zhang X, Zhou Q (2015) Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Environ Sci Pollut Res 22:8432ā€“8441

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797ā€“802

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M (2006) A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiol 140:1213ā€“1221

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Machado-Estrada B, CalderĆ³n J, Moreno-SĆ”nchez R, RodrĆ­guez-Zavala J (2013) Accumulation of arsenic, lead, copper, and zinc, synthesis of phytochelatins by indigenous plants of a mining impacted area. Environ Sci Pollut Res 20:3946ā€“3955

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol (Rockville) 110:1145ā€“1150

    CASĀ  Google ScholarĀ 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer, Dordrecht

    Google ScholarĀ 

  • Meuwly P, Thibault P, Rauser WE (1993) Ī³-Glutamylcysteinylglutamic acidā€”a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Lett 336:472ā€“476

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25ā€“37

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mithƶfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1ā€“5

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368ā€“374

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Morelli E, Scarano G (2001) Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar Environ Res 52:383ā€“395

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Murasugi A, Chiaki W, Hayashi Y (1981) Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe. J Biochem 90:1561ā€“1565

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18:4361ā€“4371

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249ā€“279

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491ā€“3499

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721ā€“4728

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Osaki Y, Shirabe T, Tamura S, Yoshimura E (2008) A functional putative phytochelatin synthase from the primitive red alga Cyanidioschyzon merolae. Biosci Biotechnol Biochem 72:3306ā€“3309

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine maxā€”relation to phytochelatin synthase. J Biol Chem 277:4747ā€“4754

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pal R, Rai J (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945ā€“963

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333ā€“340

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pawlik-Skowronska B (2001) Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat Toxicol 52:241ā€“249

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pawlik-Skowrońska B, SanitĆ  di Toppi L, Favali MA, Fossati F, Pirszel J, Skowroński T (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156:95ā€“102

    Google ScholarĀ 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113ā€“136

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Prasad MNV, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285ā€“321

    ArticleĀ  Google ScholarĀ 

  • Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus: a small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110ā€“1118

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, di Toppi LS (2005) Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43:45ā€“54

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169ā€“181

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61ā€“86

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rauser WE (1995) Phytochelatins and related peptides; Structure, biosynthesis, and function. Plant Physiol 109:1141ā€“1149

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rauser WE (1999) Structure and function of metal chelators produced by plantsā€”the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19ā€“48

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rauser WE (2003) Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure, the concentration of cadmium and the tissue. New Phytol 158:269ā€“278

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant 145:154ā€“164

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97ā€“104

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rellan-Alvarez R, Ortega-Villasante C, Alvarez-Fernandez A, del Campo FF, Hernandez LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41ā€“50

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519ā€“1528

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sadi BBM, Vonderheide AP, Gong JM, Schroeder JI, Shann JR, Caruso JA (2008) An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana. J Chromatogr B 861:123ā€“129

    ArticleĀ  CASĀ  Google ScholarĀ 

  • SchƤfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial Ī³-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87ā€“97

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Schat H, Kalff MM (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475ā€“1480

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schulz H, Haertling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins-comparison between plants with varying As sensitivities. Plant Soil 303:275ā€“287

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shahbaz M, Stuiver CEE, Posthumus FS, Parmar S, Hawkesford MJ, De Kok LJ (2014) Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites. Plant Biol 16:68ā€“78

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35ā€“52

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shimwell D, Laurie A (1972) Lead and zinc contamination of vegetation in the Southern Pennines. Environ Pollut 3:291ā€“301

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shiyab S, Chen J, Han FXX, Monts DL, Matta FB, Gu MM, Su Y, Masad MA (2009) Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environ Toxicol 24:462ā€“471

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102ā€“1110

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784. doi:10.1038/srep05784

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247ā€“270

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129ā€“1140

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405ā€“415

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930ā€“2936

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Steffens J (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Biol 41:553ā€“575

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stolt JP, Sneller FEC, Bryngelsson T, Lundborg T, Schat H (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49:21ā€“28

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sun Y, Zhou Q, Liu WT, An J, Xu ZQ, Wang L (2009) Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater 165:1023ā€“1028

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sylwia W, Anna R, Ewa B, Stephan C, Danuta Maria A (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981ā€“988

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938ā€“948

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:360ā€“368

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Thumann J, Grill E, Winnacker EL, Zenk MH (1991) Reactivation of metal-requiring apoenzymes by phytochelatinā€”metal complexes. FEBS Lett 284:66ā€“69

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914ā€“1925

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158ā€“165

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tyler G (1989) Uptake, retention and toxicity of heavy metals in lichens. Water Air Soil Pollut 47:321ā€“333

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van Balen E, Van de Geijn S, Desmet G (1980) Autoradiographic evidence for the incorporation of cadmium into calcium oxalate crystals. Z Pflanzenphysiol 97:123ā€“133

    ArticleĀ  Google ScholarĀ 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110ā€“7115

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wei S, Zhou Q, Wang X (2005) Identification of weed plants excluding the uptake of heavy metals. Environ Int 31:829ā€“834

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wei S, Teixeira da Silva JA, Zhou Q (2008a) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662ā€“668

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wei SH, Zhou QX, Saha UK (2008b) Hyperaccumulative characteristics of weed species to heavy metals. Water Air Soil Pollut 192:173ā€“181

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wei SH, Zhu JG, Zhou QX, Zhan J (2011) Fertilizer amendment for improving the phytoextraction of cadmium by a hyperaccumulator Rorippa globosa (Turcz.) Thell. J Soils Sediments 11:915ā€“922

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wierzbicka M (1986) The effect of lead on the ultrastructure changes in the root-tip of Onion-Allium cepa L. Folia Histochem Cytobiol 24:340ā€“341, Vesaluis Medical Publishing, Wislisko, Krakow, Poland

    Google ScholarĀ 

  • WĆ³jcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71ā€“80

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell Online 10:1539ā€“1550

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xiang CB, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564ā€“574

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 62:602ā€“607

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjƶblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42ā€“53

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167ā€“179

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang X, Baligar V, Martens D, Clark R (1996) Plant tolerance to nickel toxicity: II Nickel effects on influx and transport of mineral nutrients in four plant species. J Plant Nutr 19:265ā€“279

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang YY, Jung JY, Song WY, Suh HS, Lee Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019ā€“1026

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang Q, Zeng Q, Xiao F, Liu X, Pan J, He J, Li Z (2013) Investigation of manganese tolerance and accumulation of two Mn hyperaccumulators Phytolacca americana L. and Polygonum hydropiper L. in the real Mn-contaminated soils near a manganese mine. Environ Earth Sci 68:1127ā€“1134

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zenk MH (1996) Heavy metal detoxification in higher plantsā€”a review. Gene 179:21ā€“30

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang Z, Gao X, Qiu B (2008) Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69:911ā€“918

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang ZC, Chen BX, Qiu BS (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33:1248ā€“1255

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang X, Uroic MK, Xie WY, Zhu YG, Chen BD, McGrath SP, Feldmann J, Zhao FJ (2012) Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. Environ Pollut 165:18ā€“24

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhou Q, Song Y (2004) Principles and methods of contaminated soil remediation. Science, BeijingĀ (in Chinese)

    Google ScholarĀ 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169ā€“1178

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999b) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73ā€“79

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41471411, 21107052, 31270540, 31070455, and 40971184). The authors would also like to thank the Open Fund of Key Laboratory of Contaminated Environment Control and Regional Ecology Safety (grant No. SYU-KF-L-03) & Open Fund of Key Laboratory of Regional Environment Eco-remediation, Education Ministry (grant No. SYU-KF-E-03) for a partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhe Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, W., Zhang, X., Liang, L., Chen, C., Wei, S., Zhou, Q. (2015). Phytochelatin and Oxidative Stress Under Heavy Metal Stress Tolerance in Plants. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_8

Download citation

Publish with us

Policies and ethics